

UNIVERSITY OF CALICUT

B.Sc. GEOLOGY HONOURS

(MAJOR, MINOR AND GENERAL FOUNDATION COURSES)

SYLLABUS & MODEL QUESTION PAPERS w.e.f. 2024 admission onwards

(CUFYUGP Regulations 2024)

Board of Studies in Geology (Single Board)

B.Sc. GEOLOGY HONOURS (MAJOR, MINOR AND GENERAL FOUNDATION COURSES)

SYLLABUS

Contents	Page No
Programme Outcomes & Programme Specific Outcomes	4
Minimum Credit Requirements	5
Course Structure	6
List of Elective Courses	12
List of Minor Courses	14
List of Foundation Courses	15
Evaluation Scheme	24
Internship	26
Project	28
Letter Grades & Grade Points	33
Semester I	37
Semester II	41
Semester III	45
Semester IV	52
Semester V	65
Semester VI	78
Semester VII	90
Semester VIII	109
Minor Courses – Group 1	120
Minor Courses – Group 2	132
Foundation Courses Offered	143
Elective Courses	163
Research Methodology Course in Geology	213
Model Question Paper	217

PROGRAMME OUTCOMES (PO):

At the end of the graduate programme at Calicut University, a student would:

PO1	Demonstrate a profound understanding of knowledge trends and their impact on the
101	chosen discipline of study.
PO2	Become a team player who drives positive change through effective communication,
F02	collaborative acumen, transformative leadership, and a dedication to inclusivity.
PO3	Demonstrate professional skills to navigate diverse career paths with confidence and
P05	adaptability.
PO4	Demonstrate proficiency in varied digital and technological tools to understand and
PO4	interact with the digital world, thus effectively processing complex information.
	Emerge as an innovative problem-solver and impactful mediator, applying scientific
PO5	understanding and critical thinking to address challenges and advance sustainable
	solutions.
	Become a responsible leader, characterized by an unwavering commitment to human
PO6	values, ethical conduct, and a fervent dedication to the well-being of society and the
	environment.
	Emerge as a researcher and entrepreneurial leader, forging collaborative partnerships
PO7	with industry, academia, and communities to contribute enduring solutions for local,
	regional, and global development.

PROGRAMME SPECIFIC OUTCOMES (PSO):

At the end of the BSc Geology Honours programme at Calicut University, a student would:

PSO1	Understand Earth processes, including plate tectonics, sedimentation, magmatism, and metamorphism, and be able to apply this knowledge to interpret geological phenomena and history.
PSO2	Have a deep understanding of Earth materials, including minerals, rocks, ores and their economic importance.
PSO3	Have a profound knowledge about origin and geologic evolution of Indian subcontinent with particular reference to geochronology, stratigraphy and fossil content.
PSO4	Demonstrate proficiency in conducting geological fieldwork, including the ability to identify and interpret various geological formations, collect samples effectively, and to create geological maps.
PSO5	Be able to assess geological hazards and contribute to sustainable resource management practices through responsible decision-making.
PSO6	Be able to integrate knowledge from other disciplines such as physics, chemistry, and engineering with geological principles to address climate change, natural resource exploration, and environmental remediation.

MINIMUM CREDIT REQUIREMENTS OF THE DIFFERENT PATHWAYS IN THE THREE-YEAR PROGRAMME IN CUFYUGP

Sl. No	Academic Pathway		Other DisciplinesCourses AEC: 4ourse has reditsMDC: 3SEC: 3 VAC: 3		AEC: 4 MDC: 3 SEC: 3 VAC: 3		Example
				Each course has 3 credits			
1	Single Major (A)	68 (17 courses)	24 (6 courses)	39 (13 courses)	2	133	Major: Geology + six courses in different disciplines in different combinations
2	Major (A) with Multiple Disciplines (B, C)	68 (17 courses)	12 + 12 (3 + 3 = 6 courses)	39 (13 courses)	2	133	Major: Geology + Chemistry and Physics/Statistics/ Mathematics
3	Major (A) with Minor (B)	68 (17 courses)	24 (6 courses)	39 (13 courses)	2	133	Major: Geology Minor: From any other Major
4	Major (A) with Vocational Minor (B)	68 (17 courses)	(6 courses)	(13 courses)	2	133	Major: Geology Minor: From any other Major
5	Double Major (A, B)	A: 48 (12 courses) B: 44 (11 courses)	are distribut Majors. 2 MDC, 2 Internship sl Total credits 48 + 20 = 68 1 MDC, 1 S be in Majo	12 + 18 + 9 its in the Mino ted between SEC, 2 VAC hould be in M in Major A sl (50% of 133) EC and 1 VAC r B. Total cr ould be 44 +	133	Geology and Chemistry double major	
	E	xit with UG	Degree / Proc	eed to Fourth Y	Year with	133 Credit	S

B.Sc. GEOLOGY HONOURS PROGRAMME

COURSE STRUCTURE FOR PATHWAYS 1 – 4

1. Single Major

2. Major with Multiple Disciplines

3. Major with Minor

4. Major with Vocational Minor

Seme	Course	urse	Total	Hours/		Marks		
ster	Code	Course Title		Week	Credits	Inter nal	Exter nal	Total
	GEL1CJ 101/ GEL1MN 100	Core Course 1 in Major – Introduction to Geology	75	5	4	30	70	100
		Minor Course 1	60/75	4/5	4	30	70	100
		Minor Course 2	60/75	4/5	4	30	70	100
1	ENG1FA 101(2)	Ability Enhancement Course 1– English	60	4	3	25	50	75
		Ability Enhancement Course 2 – Additional Language	45	3	3	25	50	75
		Multi-Disciplinary Course 1 – Other than Major		3	3	25	50	75
		Total		23/25	21			525
	GEL2CJ 101/ GEL2MN 100	Core Course 2 in Major – Processes at the Earth's Surface	75	5	4	30	70	100
		Minor Course 3	60/75	4/5	4	30	70	100
		Minor Course 4	60/75	4/5	4	30	70	100
2	ENG2FA 103(2)	Ability Enhancement Course 3– English	60	4	3	25	50	75
		Ability Enhancement Course 4 – Additional Language	45	3	3	25	50	75
		Multi-Disciplinary Course 2 – Other than Major	45	3	3	25	50	75
		Total		23/ 25	21			525
	GEL3CJ 201	Core Course 3 in Major – Introductory Geoinformatics	60	4	4	30	70	100
3	GEL3CJ 202/ GEL 3MN200	Core Course 4 in Major – Crystallography & Stratigraphy	75	5	4	30	70	100
		Minor Course 5	60/75	4/5	4	30	70	100

		Minor Course 6	60/75	4/5	4	30	70	100
		Multi-Disciplinary Course 3 – Kerala Knowledge System	45	3	3	25	50	75
	ENG3FV 108(2)	Value-Added Course 1 – English	45	3	3	25	50	75
		Total		23/ 25	22			550
	GEL4CJ 203	Core Course 5 in Major – Geoinformatics & Field Geology – I ^{**}	75	5	4	30	70	100
	GEL 4CJ 204	Core Course 6 in Major – Mineralogy	75	5	4	30	70	100
	GEL4CJ 205	Core Course 7 in Major – Sedimentary Petrology & Palaeontology	75	5	4	30	70	100
4	ENG4FV 109(2)	Value-Added Course 2 – English	45	3	3	25	50	75
		Value-Added Course 3 – Additional Language	45	3	3	25	50	75
	ENG4FS 111(2)	Skill Enhancement Course 1 – English	60	4	3	25	50	75
		Total		25	21			525
	GEL5CJ 301	Core Course 8 in Major – Geoinformatics & Field Geology -II ^{**}	75	5	4	30	70	100
	GEL5CJ 302	Core Course 9 in Major – Igneous Petrology	75	5	4	30	70	100
5	GEL5CJ 303	Core Course 10 in Major – Metamorphic Petrology	60	4	4	30	70	100
		Elective Course 1 in Major	60	4	4	30	70	100
		Elective Course 2 in Major	60	4	4	30	70	100
		Skill Enhancement Course 2	45	3	3	25	50	75
		Total		25	23			575
	GEL6CJ 304/ GEL8MN 304	Core Course 11 in Major – Economic Geology	75	5	4	30	70	100
6	GEL6CJ 305/ GEL8MN 305	Core Course 12 in Major– Structural Geology & Geotectonics	75	5	4	30	70	100
	GEL6CJ 306/ GEL8MN 306	Core Course 13 in Major – Indian Geology	60	4	4	30	70	100

		Elective Course 3 in Major	60	4	4	30	70	100		
		Elective Course 4 in Major	60	4	4	30	70	100		
	GEL6FS 113	Skill Enhancement Course 3 – Content Writing in Geology	45	3	3	25	50	75		
	GEL6CJ 349	Internship in Major (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50		
		Total		25	25			625		
		Total Credits for Three Years			133			3325		
	GEL7CJ 401	Core Course 14 in Major – Hydrogeology	75	5	4	30	70	100		
	GEL7CJ 402	Core Course 15 in Major – Applied Geomorphology	75	5	4	30	70	100		
7	GEL7CJ 403	Core Course 16 in Major – Advanced Palaeontology	75	5	4	30	70	100		
	GEL7CJ 404	Core Course 17 in Major – Marine Geology	75	5	4	30	70	100		
	GEL7CJ 405	Core Course 18 in Major – Advanced Mineralogy & Crystallography	75	5	4	30	70	100		
		Total		25	20			500		
	GEL8CJ 406 / GEL8MN 406	Core Course 19 in Major – Geoinformatics Applications	75	5	4	30	70	100		
	GEL8CJ 407 / GEL8MN 407	Core Course 20 in Major – Engineering Geology	60	4	4	30	70	100		
8	GEL8CJ 408 / GEL8MN 408	Core Course 21 in Major – Exploration Geology	60	4	4	30	70	100		
		OR (instead of Core Courses 19 – 21 in Major)								
	GEL8CJ 449	Project (in Honours programme)	360*	13*	12	90	210	300		
	GEL8CJ 499	Research Project (in Honours with Research programme)	360*	13*	12	90	210	300		
		Elective Course 5 in Major / Minor Course 7	60	4	4	30	70	100		

I	Total Credits for Four Years						4425
	Total		25	24			600
GEL8CJ 489	Research Methodology in Geology	60	4	4	30	70	100
OR (ii	nstead of Elective Course 7 in Major, in th	e case of	Honours	with Res	search	Progran	nme)
	Elective Course 7 in Major / Minor Course 9 / Major Course in any Other Discipline	60	4	4	30	70	100
	Elective Course 6 in Major / Minor Course 8	60	4	4	30	70	100

The teacher should have 13 hrs/week of engagement (the hours corresponding to the three core courses) in the guidance of the Project(s) in Honours programme and Honours with Research programme, while each student should have 24 hrs/week of engagement in the Project work. Total hours are given based on the student's engagement.

**The practical component of the course will be a fieldwork for eight to nine days including six working days. This can be carried out anytime during the semester.

CREDIT DISTRIBUTION FOR PATHWAYS 1 – 4

- 1. Single Major
- 3. Major with Minor

2. Major with Multiple Disciplines

lajor with Mir	ıor		4. Major with Vocational Minor			
Semester	Major Courses	Minor Courses	General Foundation Courses	Internship/ Project	Total	
1	4	4 + 4	3 + 3 + 3	-	21	
2	4	4 + 4	3+3+3	-	21	
3	4 + 4	4 + 4	3 + 3	-	22	
4	4 + 4 + 4	-	3 + 3 + 3	-	21	
5	4 + 4 + 4 + 4 + 4	-	3	-	23	
6	4 + 4 + 4 + 4 + 4	-	3	2	25	
Total for						
Three	68	24	39	2	133	
Years						
7	4 + 4 + 4 + 4 + 4	-	-	-	20	
8	4 + 4 + 4	4 + 4 + 4	-	12*	24	
	* in	stead of thre	ee Major course	es		
Total for Four Years	88 + 12 = 100	36	39	2	177	

DISTRIBUTION OF MAJOR COURSES IN GEOLOGY FOR PATHWAYS 1 – 4

1. Single Major

2. Major with Multiple Disciplines

3. Major with Minor

4. Major with Vocational Minor

Semes ter	Course Code	Course Title	Hours/ Week	Credits
1	GEL1CJ 101/ GEL1MN 100	Core Course 1 in Major – Introduction to Geology	5	4
2	GEL2CJ 101/ GEL2MN 100	Core Course 2 in Major – Processes at the Earth's Surface	5	4
	GEL3CJ 201	Core Course 3 in Major – Introductory Geoinformatics	4	4
3	GEL3CJ 202/ GEL3MN 200	Core Course 4 in Major – Crystallography & Stratigraphy	5	4
	GEL4CJ 203	Core Course 5 in Major – Geoinformatics & Field Geology - I	5	4
4	GEL4CJ 204	Core Course 6 in Major – Mineralogy	5	4
	GEL4CJ 205	Core Course 7 in Major – Sedimentary Petrology & Palaeontology	5	4
	GEL5CJ 301	Core Course 8 in Major – Geoinformatics & Field Geology -II	5	4
	GEL5CJ 302	Core Course 9 in Major – Igneous Petrology	5	4
5	GEL5CJ 303	Core Course 10 in Major – Metamorphic Petrology	4	4
		Elective Course 1 in Major	4	4
		Elective Course 2 in Major	4	4
6	GEL6CJ 304/ GEL8MN 304	Core Course 11 in Major – Economic Geology	5	4
	GEL6CJ 305/ GEL8MN	Core Course 12 in Major– Structural Geology & Geotectonics	5	4

	305			
	GEL6CJ 306/ GEL8MN 306	Core Course 13 in Major – Indian Geology	4	4
		Elective Course 3 in Major	4	4
		Elective Course 4 in Major	4	4
	GEL6CJ 349	Internship in Major	-	2
		Total for the Three Years		70
	GEL7CJ 401	Core Course 14 in Major – Hydrogeology	5	4
	GEL7CJ 402	Core Course 15 in Major – Applied Geomorphology	5	4
7	GEL7CJ 403	Core Course 16 in Major – Advanced Palaeontology	5	4
	GEL7CJ 404	Core Course 17 in Major – Marine Geology	5	4
	GEL7CJ 405	Core Course 18 in Major – Advanced Mineralogy & Crystallography	5	4
	GEL8CJ 406 / GEL8MN 406	Core Course 19 in Major – Geoinformatics Applications	5	4
	GEL8CJ 407 / GEL8MN 407	Core Course 20 in Major – Engineering Geology	4	4
	GEL8CJ 408 / GEL8MN 408	Core Course 21 in Major – Exploration Geology	4	4
8		OR (instead of Core Courses 19 – 21 in Major)		
	GEL8CJ 449	Project (in Honours programme)	13	12
	GEL8CJ 499	Research Project (in Honours with Research programme)	13	12
		Elective Course 5 in Major	4	4
		Elective Course 6 in Major	4	4
		Elective Course 7 in Major	4	4
	OR (instead	d of Elective course 7 in Major, in Honours with Resea	arch progra	amme)

GEL8CJ 489	Research Methodology in Geology	4	4
	Total for the Four Years		114

Note:

- i. Choose any two elective courses each from the course basket of 4 elective courses in semester 5 & 4 elective courses in semester 6.
- ii. Choose any three elective courses from the course basket of 6 elective courses in semester8, as listed below in the table of elective courses with no specialisation

Group	Sl.	Course	Title	Seme	Total	Hrs/	Cre		Marks	6
No.	No.	Code		ster	Hrs	Week	dits	Inte	Exte	Total
								rnal	rnal	
1			Fi	eld Tech	niques					
	1	GEL5EJ	Mine Planning &	5	60	4	4	30	70	100
		301	Resource Estimation							
	2	GEL5EJ	Geotechnical Engineering	5	60	4	4	30	70	100
		302								
	3	GEL6EJ	Survey Techniques	6	60	4	4	30	70	100
		301								
	4	GEL6EJ	Offshore Mineral	6	60	4	4	30	70	100
		302	Resources & Mining							
2			Envir	onment	& Clima	ate				
	1	GEL5EJ	Environmental Geology	5	60	4	4	30	70	100
		303								
	2	GEL5EJ	Natural Disaster	5	60	4	4	30	70	100
		304	Management							
	3	GEL6EJ	Environmental Impact	6	60	4	4	30	70	100
		303	Assessment							
	4	GEL6EJ	Geology & Climate	6	60	4	4	30	70	100
		304	Change							
							·			

ELECTIVE COURSES IN GEOLOGY WITH SPECIALISATION

Sl.	Course	Title	Seme	Total	Hrs/	Cre		Marks	5
No.	Code		ster	Hrs	Week	dits	Inte	Exte	Total
							rnal	rnal	
1	GEL8EJ	Climatology	8	60	4	4	30	70	100
	401								
2	GEL8EJ	Environmental	8	60	4	4	30	70	100
	402	Informatics							
3	GEL8EJ	Remote Sensing for	8	60	4	4	30	70	100
	403	Geology							
4	GEL8EJ	Oceanography	8	60	4	4	30	70	100
	404								
5	GEL8EJ	Analytical techniques in	8	60	4	4	30	70	100
	405	Geology							
6	GEL8EJ	Introduction to Soil	8	60	4	4	30	70	100
	406	Science							

ELECTIVE COURSES IN GEOLOGY WITH NO SPECIALISATION

GROUPING OF MINOR COURSES IN GEOLOGY

Group	Sl.	Course	Title	Seme	Total	Hrs/	Cre		Marks	5
No.	No.	Code		ster	Hrs	Week	dits	Inte	Exte	Total
								rnal	rnal	
			Geoinformatics (For	students	other that	an Geolo	gy Ma	jor)		
	1	GEL1MN	Geoinformatics - 1	1	75	5	4	30	70	100
		101								
1	2	GEL2MN	Geoinformatics – 1I	2	75	5	4	30	70	100
		101								
	3	GEL3MN	Geoinformatics – 1II	3	75	5	4	30	70	100
		201								
		•							•	

(Title of the Minor: **GEOLOGY**)

Group	Sl.	Course	Title	Seme	Total	Hrs/	Cre		Marks	
No.	No.	Code		ster	Hrs	Week	dits	Inte	Exte	Total
								rnal	rnal	
	Basic Geology (For students other than Geology Major)									
	1	GEL1MN	Physical Geology	1	75	5	4	30	70	100
		102	Thysical Ocology							
2	2	GEL2MN	Coomorphology	2	75	5	4	30	70	100
		102	Geomorphology	2	15	5	4	30	70	100
	3	GEL3MN	Historical Coology	3	75	5	4	30	70	100
		202	Historical Geology	3	15	5	4	30	70	100
							-	-		

- **i.** From the minor groups given above maximum one group (3 courses) can be offered to students who have taken Geology as their discipline.
- **ii.** Students in Single Major pathway can choose course/courses from any of the Minor/ Vocational Minor groups offered by a discipline other than their Major discipline.
- **iii.** Students in Major with Multiple Disciplines pathway can choose as one of the multiple disciplines, all the three courses from any one of the Minor/ Vocational Minor groups offered by a discipline, other than their Major discipline.
- iv. Students in Major with Minor pathway can choose all the courses from any two Minor groups offered by a discipline other than their Major discipline. If the students from other Major disciplines choose the two Minor groups in Geology as given above, then the title of the Minor will be Geology.

Sem	Course		Total	Hours/			Marks	
ester	Code	Course Title	Hours	Week	Credits	Inter nal	Exter nal	Total
1	GEL1FM 105	Multi-Disciplinary Course 1 – Exploring the Mother Earth	45	3	3	25	50	75
2	GEL2FM 106	Multi-Disciplinary Course 2 – Minerals, Rocks & Fascinating Plate Tectonics	45	3	3	25	50	75
3	GEL3FV 108	Value-Added Course 1 – Geology & Sustainable Development Goals	45	3	3	25	50	75
4	GEL4FV 110	Value-Added Course 2 –Water Conservation Techniques	45	3	3	25	50	75
5	GEL5FS 112	Skill Enhancement Course 2 – Water Quality Assessment	45	3	3	25	50	75
6	GEL6FS 113	Skill Enhancement Course 3 – Content Writing in Geology	45	3	3	25	50	75

DISTRIBUTION OF GENERAL FOUNDATION COURSES IN GEOLOGY

COURSE STRUCTURE FOR BATCH A1(B2) IN PATHWAY 5: DOUBLE MAJOR

A1: 68 credits in Geology (Major A)

B1: 68 credits in Major B

A2: 53 credits in Geology (Major A)

B2: 53 credits in Major B The combinations available to the students: (A1 & B2), (B1 & A2)

Note: Unless the batch is specified, the course is for all the students of the class

Seme	Course		Total	Hours/			Mar	KS
ster	Code	Course Title	Hours	Week	Credits	Inter nal	Exter nal	Total
		Core Course 1 in Major Geology– Introduction to Geology	75	5	4	30	70	100
	BBB1CJ 101	Core Course 1 in Major B –	60/ 75	4/5	4	30	70	100
1	GEL1CJ 102/ GEL2CJ 101/ GEL2MN 100	Core Course 2 in Major Geology – Processes at the Earth's Surface (for batch A1 only)	75	5	4	30	70	100
		Ability Enhancement Course 1 – English	60	4	3	25	50	75
		Ability Enhancement Course 2 – Additional Language	45	3	3	25	50	75
	GEL1FM 105	Multi-Disciplinary Course 1 – Exploring the Mother Earth (for batch A1 only)	45	3	3	25	50	75
		Total		24/25	21			525
	GEL2CJ 102/ GEL3CJ 202/ GEL3MN 200	Core Course 3 in Major Geology – Crystallography & Stratigraphy	75	5	4	30	70	100
2	BBB2CJ 101	Core Course 2 in Major B –	60/ 75	4/5	4	30	70	100
		Core Course 3 in Major B – (for batch B2 only)	60/ 75	4/ 5	4	30	70	100

	ENG2FA	Ability Enhancement Course 3 –	60	4	3	25	50	75
	103(2)	English	00	7	5			15
		Ability Enhancement Course 4 – Additional Language	45	3	3	25	50	75
	GEL2FM 106	Multi-Disciplinary Course 2 in Geology – Minerals, Rocks & Fascinating Plate Tectonics	45	3	3	25	50	75
		Total		23 – 25	21			525
	GEL3CJ 201	Core Course 4 in Major Geology – Introductory Geoinformatics	60	4	4	30	70	100
	GEL3CJ 203/ GEL4CJ 204	Core Course 5 in Major Geology – Mineralogy	75	5	4	30	70	100
	BBB3CJ 201	Core Course 4 in Major B	60/ 75	4/5	4	30	70	100
3	BBB3CJ 202	Core Course 5 in Major B	60/ 75	4/5	4	30	70	100
	BBB3FM 106 / BBB2FM 106	Multi-Disciplinary Course 1 in B –	45	3	3	25	50	75
	GEL3FV 108	Value-Added Course 1 in Geology – Geology & Sustainable Development Goals (for batch A1 only)	45	3	3	25	50	75
		Total		23 - 25	22			550
	GEL4CJ 201/ GEL4CJ 205	Core Course 6 in Major Geology – Sedimentary Petrology & Palaeontology	75	5	4	30	70	100
		Core Course 6 in Major B	60/75	4/5	4	30	70	100
4	GEL4CJ 202/ GEL4CJ 203	Core Course 7 in Major Geology – Geoinformatics & Field Geology – I (for batch A1 only)	75	5	4	30	70	100
	GEL4FV 110	Value-Added Course 2 in Geology – Water Conservation Techniques	45	3	3	25	50	75
	BBB4FV 110	Value-Added Course 1 in B –	45	3	3	25	50	75

	GEL5FS 112	Skill Enhancement Course 1 in Geology – Water Quality Assessment	45	3	3	25	50	75
		Total		23/24	21			525
	GEL5CJ 301	Core Course 8 in Major Geology – Geoinformatics & Field Geology -II	75	5	4	30	70	100
		Core Course 7 in Major B –	60/75	4/5	4	30	70	100
F	GEL5CJ 304/ GEL5CJ 303	Core Course 9 in Major Geology – Metamorphic Petrology (for batch A1 only)	60	4	4	30	70	100
5		Elective Course 1 in Major Geology	60	4	4	30	70	100
		Elective Course 1 in Major B	60	4	4	30	70	100
	BBB5FS 112 / BBB4FS 112	Skill Enhancement Course 1 in B	45	3	3	25	50	75
		Total		24/25	23			575
	GEL6CJ 301 GEL5CJ 302	Core Course 10 in Major Geology – Igneous Petrology	75	5	4	30	70	100
		Core Course 8 in Major B	60/75	4/5	4	30	70	100
	BBB6CJ 305	Core Course 9 in Major B – (for batch B2 only)	60	4	4	30	70	100
		Elective Course 2 in Major Geology	60	4	4	30	70	100
6		Elective Course 2 in Major B	60	4	4	30	70	100
	GEL6FS 113	Skill Enhancement Course 2 in Geology– Content Writing In Geology (for batch A1 only)	45	3	3	25	50	75
	GEL6CJ 349	Internship in Major Geology (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50
		Total		24/25	25			625
	1	Total Credits for Three Years	1	1	133			3325

categories completed at the end of semester 6.

The course code of the same course as used for the pathways 1-4

CREDIT DISTRIBUTION FOR BATCH A1(B2) IN PATHWAY 5: DOUBLE MAJOR

Semester	Major Courses in Geology	General Foundation Courses in Geology	Internship/ Project in Geology	Major Courses in B	General Foundation Courses in B	AEC	Total
1	4 + 4	3	-	4	-	3 + 3	21
2	4	3	-	4 + 4	-	3 + 3	21
3	4 + 4	3	-	4 + 4	3	-	22
4	4 + 4	3 + 3	-	4	3	-	21
5	4 + 4 + 4	-	-	4 + 4	3	-	23
6	4 + 4	3	2	4 + 4 + 4	-	-	25
Total for	48	18	2	44	9	12	133
Three Years		68		5	53	12	133
	Major Courses in Geology	Minor Courses					
7	4 + 4 + 4 + 4 + 4 + 4 + 4	-			-	-	20
8	4 + 4 + 4	4 + 4 + 4	12*		-	-	24
		* in	stead of three	Major courses	-		
Total for Four Years	88 + 12 = 100	12					177

COURSE STRUCTURE FOR BATCH B1(A2) IN PATHWAY 5: DOUBLE MAJOR

A1: 68 credits in Geology (Major A)

B1: 68 credits in Major B

A2: 53 credits in Geology (Major A)

B2: 53 credits in Major B

The combinations available to the students: (A1 & B2), (B1 & A2)

Note: Unless the batch is specified, the course is for all the students of the class

Seme	Course		Total	Hours/			Mark	S
ster	Code	Course Title	Hours	Week	Credits	Inter nal	Exter nal	Total
	GEL1CJ 101/ GEL1MN 100	Core Course 1 in Major Geology – Introduction to Geology	75	5	4	30	70	100
	BBB1CJ 101	Core Course 1 in Major B –	60/ 75	4/5	4	30	70	100
1	BBB1CJ 102 / BBB2CJ 102	Core Course 2 in Major B – (for batch B1 only)	60/ 75	4/ 5	4	30	70	100
	ENG1FA 101(2)	Ability Enhancement Course 1 – English	60	4	3	25	50	75
		Ability Enhancement Course 2 – Additional Language	45	3	3	25	50	75
	BBB1FM 105	Multi-Disciplinary Course 1 in B – (for batch B1 only)	45	3	3	25	50	75
		Total		23 – 25	21			525
	GEL2CJ 101/ GEL2MN 100	Core Course 2 in Major Geology – Processes at the Earth's Surface	75	5	4	30	70	100
	BBB2CJ 101	Core Course 3 in Major B –	60/75	4/5	4	30	70	100
2	GEL2CJ 102/ GEL3CJ 202/ GEL3MN 200	Core Course 3 in Major Geology – Crystallography & Stratigraphy (for batch A2 only)	75	5	4	30	70	100
		Ability Enhancement Course 3 – English	60	4	3	25	50	75

		Ability Enhancement Course 4 – Additional Language	45	3	3	25	50	75
	GEL1FM 105	Multi-Disciplinary Course 1 in Geology –Exploring the Mother Earth	45	3	3	25	50	75
		Total		24/25	21			525
	GEL3CJ 201	Core Course 4 in Major Geology – Introductory Geoinformatics	60	4	4	30	70	100
	GEL3CJ 203/ GEL4CJ 204	Core Course 5 in Major Geology – Mineralogy	75	5	4	30	70	100
	BBB3CJ 201	Core Course 4 in Major B	60/75	4/5	4	30	70	100
3	BBB3CJ 202	Core Course 5 in Major B	60/75	4/5	4	30	70	100
	BBB3FM 106 / BBB2FM 106	Multi-Disciplinary Course 2 in B –	45	3	3	25	50	75
	BBB3FV 108	Value-Added Course 1 in B – (for batch B1 only)	45	3	3	25	50	75
		Total		23 - 25	22			550
	GEL4CJ 201/ GEL4CJ 205	Core Course 6 in Major Geology – Sedimentary Petrology & Palaeontology	75	5	4	30	70	100
		Core Course 6 in Major B	60/75	4/5	4	30	70	100
		Core Course 7 in Major B – (for batch B1 only)	60/ 75	4/5	4	30	70	100
4	GEL4FV 110	Value-Added Course 2 in Geology – Water Conservation Techniques	45	3	3	25	50	75
	BBB4FV 110	Value-Added Course 2 in B –	45	3	3	25	50	75
	GEL5FS 112	Skill Enhancement Course 1 in Geology – Water Quality Assessment	45	3	3	25	50	75
		Total		22 - 24	21			525

	Total Credits for Three Years				133			3325
		Total		24/25	25			625
	BBB6CJ 349	Internship in Major B (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50
	BBB6FS 113	Skill Enhancement Course 2 in B – (for batch B1 only)	45	3	3	25	50	75
		Geology Elective Course 2 in Major B	60	4	4	30	70	100
6	GEL6CJ 302 GEL5CJ 303	Core Course 9 in Major Geology – Metamorphic Petrology (for batch A2 only) Elective Course 2 in Major	60 60	4	4	30 30	70	100
		Core Course 10 in Major B –	60/ 75	4/ 5	4	30	70	100
	GEL6CJ 301/ GEL5CJ 302	Core Course 8 in Major – Igneous Petrology	75	5	4	30	70	100
		Total		24/25	23			575
	BBB5FS 112 / BBB4FS 112	Skill Enhancement Course 1 in B	45	3	3	25	50	75
		Elective Course 1 in Major B	60	4	4	30	70	100
5		Elective Course 1 in Major Geoloy	60	4	4	30	70	100
		Core Course 9 in Major B – (for batch B1 only)	60	4	4	30	70	100
		Core Course 8 in Major B –	60/75	4/5	4	30	70	100
	GEL5CJ 301	Core Course 7 in Major – Geoinformatics & Field Geology -II	75	5	4	30	70	100

To continue to study Geology in semesters 7 and 8, batch B1(A2) needs to earn additional 15 credits in Geology to make the total credits of 68. Suppose this condition is achieved, and the student of batch B1(A2) proceeds to the next semesters to study Geology. The course structure in semesters 7 and 8 is the same as for pathways 1 - 4, except that the number of the core and elective courses is in continuation of the number of courses in the two categories completed at the end of semester 6, taking into account the number of courses in Geology taken online to earn the additional 15 credits.

The course code of the same course as used for the pathways 1-4

CREDIT DISTRIBUTION FOR BATCH B1(A2) IN PATHWAY 5: DOUBLE MAJOR

	Major	General	Internship/	Major Courses in	General Foundation	AEC	
Semester	Courses in	Foundation	Project in B	Geology	Courses in		Total
	В	Courses in B		Geology			
1	4 + 4	3	-	4	-	3 + 3	21
2	4	-	-	4 + 4	3	3 + 3	21
3	4 + 4	3 + 3	-	4 + 4	-	-	22
4	4 + 4	3	-	4	3 + 3	-	21
5	4 + 4 + 4	3	-	4 + 4	_	-	23
6	4 + 4	3	2	4 + 4 + 4	-	-	25
Total for	48	18	2	44	9	12	133
Three Years		68		5	53	12	133
	1			1		1	
	Major	Minor					
	Courses in	Courses					
	В						
7	4+4+4+	-			-	-	20
	4 + 4		*				
8	4 + 4 + 4	4+4+4	12*		-	-	24
		* in	stead of three l	Major courses			
Total for	88 + 12 =						
	$00 \pm 14 -$						
Four Years	100 + 12 - 100	12					177

EVALUATION SCHEME

1. The evaluation scheme for each course contains two parts: internal evaluation (about 30%) and external evaluation (about 70%). Each of the Major and Minor courses is of 4-credits. It is evaluated for 100 marks, out of which 30 marks is from internal evaluation and 70 marks, from external evaluation. Each of the General Foundation course is of 3-credits. It is evaluated for 75 marks, out of which 25 marks is from internal evaluation and 50 marks, from external evaluation.

- **2.** The 4-credit courses (Major and Minor courses) are of two types: (i) courses with only theory and (ii) courses with 3-credit theory and 1-credit practical.
 - In 4-credit courses with only theory component, out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 10 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.
 - In 4-credit courses with 3-credit theory and 1-credit practical components, out of the total 5 modules of the syllabus, 4 modules are for theory and the fifth module is for practical. The practical component is internally evaluated for 20 marks. The internal evaluation of the 4 theory modules is for 10 marks.

3. All the 3-credit courses (General Foundational Courses) in Geology are with only theory component. Out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 5 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.

Sl. No.	Nature of the Course		Internal Evaluation in Marks (about 30% of the total)		External Exam	Total Marks
			Open-ended module / Practical	On the other 4 modules	on 4 modules (Marks)	
1	4-credit course	only theory (5 modules)	10	20	70	100
2	4-credit course	Theory (4 modules) + Practical	20	10	70	100
3	3-credit course	only theory (5 modules)	5	20	50	75

1. MAJOR AND MINOR COURSES

S1.	Components of Internal	Inte	ernal Marks for	the Theory Pa	rt		
No.	Evaluation of Theory	of a Major / Minor Course of 4-credits					
	Part of a Major / Minor Course	Theory	Only	Theory + Practical			
		4 Theory Open-ended		4 Theory	Practical		
		Modules	Module	Modules			
1	Test paper/	10	4	5	-		
	Mid-semester Exam						
2	Seminar/ Viva/ Quiz	6	4	3	-		
3	Assignment	4	2	2	-		
		20 10		10 20*			
	Total	30		30			

1.1. INTERNAL EVALUATION OF THEORY COMPONENT

^{*} Refer the table in section 1.2 for the evaluation of practical component

1.2. EVALUATION OF PRACTICAL COMPONENT

The evaluation of practical component in Major and Minor courses is completely by internal evaluation.

- Continuous evaluation of practical by the teacher-in-charge shall carry a weightage of 50%.
- The end-semester practical examination and viva-voce, and the evaluation of practical records shall be conducted by the teacher in-charge and an internal examiner appointed by the Department Council.
- The process of continuous evaluation of practical courses shall be completed before 10 days from the commencement of the end-semester examination.
- Those who passed in continuous evaluation alone will be permitted to appear for the endsemester examination and viva-voce.

The scheme of continuous evaluation and the end-semester examination and viva-voce of practical component shall be as given below:

Sl. No.	Evaluation of Practical Component	Marks for	Weightage
	of Credit-1 in a Major / Minor Course	Practical	
1	Continuous evaluation of practical/ exercise performed in practical classes by the students	10	50%
2	End-semester examination and viva-voce to be conducted by teacher-in-charge along with an additional examiner arranged internally by the Department Council	7	35%
3	Evaluation of the Practical records submitted for the end semester viva–voce examination by the teacher- in-charge and additional examiner	3	15%
	Total Marks	20	

1.3. EXTERNAL EVALUATION OF THEORY COMPONENT

External evaluation carries 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the University based on 10-point grading system (refer section 5).

		Total No. of	No. of	Marks for	Ceiling
Duration	Туре	Questions	Questions to be	Each	of
			Answered	Question	Marks
	Short Answer	10	8 - 10	3	24
2 Hours	Paragraph/ Problem	8	6-8	6	36
	Essay	2	1	10	10
				Total Marks	70

PATTERN OF QUESTION PAPER FOR MAJOR AND MINOR COURSES

2. INTERNSHIP

- All students should undergo Internship of 2-credits during the first six semesters in a firm, industry or organization, or training in labs with faculty and researchers of their own institution or other Higher Educational Institutions (HEIs) or research institutions.
- Internship can be for enhancing the employability of the student or for developing the research aptitude.
- Internship can involve hands-on training on a particular skill/ equipment/ software. It can be a short project on a specific problem or area. Attending seminars or workshops related to an area of learning or skill can be a component of Internship.

• A faculty member/ scientist/ instructor of the respective institution, where the student does the Internship, should be the supervisor of the Internship.

2.1. GUIDELINES FOR INTERNSHIP

- 1. Internship can be in Geology or allied disciplines.
- 2. There should be minimum 60 hours of engagement from the student in the Internship.
- 3. Summer vacations and other holidays can be used for completing the Internship.
- 4. In BSc. Geology Honours programme, institute/ industry visit is a requirement for the completion of Internship. The internship can be carried out in a geologic organization, Geological research institute, research laboratory or place of geologic importance. A brief report of the internship has to be submitted with photos and analysis.
- 5. The students should make regular and detailed entries in to a personal log book throughout the period of internship. The log book will be a record of the progress of the Internship and the time spent on the work, and it will be useful in writing the final report. It may contain experimental conditions and results, ideas, mathematical expressions, rough work and calculation, computer file names etc. All entries should be dated. The Internship supervisor should periodically examine and countersign the log book.
- 6. The log book and the typed report must be submitted at the end of the Internship.
- 7. The institution at which the Internship will be carried out should be prior-approved by the Department Council of the college where the student has enrolled for the UG Honours programme.

2.2. EVALUATION OF INTERNSHIP

- The evaluation of Internship shall be done internally through continuous assessment mode by a committee internally constituted by the Department Council of the college where the student has enrolled for the UG Honours programme.
- The credits and marks for the Internship will be awarded only at the end of semester 6.
- The scheme of continuous evaluation and the end-semester viva-voce examination based on the submitted report shall be as given below:

Sl. No.	Components of Evaluation of Internship		Marks for Internship 2 Credits	Weightage
1	Continuous evaluation of internship through interim	Acquisition of skill set	10	40%
2	presentations and reports by the committee internally	Interim Presentation and Viva-voce	5	
3	constituted by the Department Council	Punctuality and Log Book	5	
4	Report of Institute Visit/ Stu	5	10%	
5	End-semester viva-voce examination to be	Quality of the work	6	35%
6	conducted by the	Presentation of the work	5	
7	committee internally constituted by the Department Council	Viva-voce	6	
8	Evaluation of the day-to-day records, the report of internship supervisor, and final report submitted for the end semester viva–voce examination before the committee internally constituted by the Department Council		8	15%
		Total Marks	50	

3. PROJECT

3.1. PROJECT IN HONOURS PROGRAMME

- In Honours programme, the student has the option to do a Project of 12-credits instead of three Core Courses in Major in semester 8.
- The Project can be done in the same institution or any other higher educational institution (HEI) or research centre/ training centre.
- A project in Honours programme can be a short research work or an extended internship or a skill-based training programme.
- A faculty member of the respective institution, where the student does the Project, should be the supervisor of the Project.

3.2. PROJECT IN HONOURS WITH RESEARCH PROGRAMME

- Students who secure 75% marks and above (equivalently, CGPA 7.5 and above) cumulatively in the first six semesters are eligible to get selected to Honours with Research stream in the fourth year.
- A relaxation of 5% in marks (equivalently, a relaxation of 0.5 grade in CGPA) is allowed for those belonging to SC/ ST/ OBC (non-creamy layer)/ Differently-Abled/ Economically Weaker Section (EWS)/ other categories of candidates as per the decision of the UGC from time to time.
- In Honours with Research programme, the student has to do a mandatory Research Project of 12-credits instead of three Core Courses in Major in semester 8.
- The approved research centres of University of Calicut or any other university/ HEI can offer the Honours with Research programme. The departments in the affiliated colleges under University of Calicut, which are not the approved research centres of the University, should get prior approval from the University to offer the Honours with Research programme. Such departments should have minimum two faculty members with Ph.D., and they should also have the necessary infrastructure to offer Honours with Research programme.
- A faculty member of the University/ College with a Ph.D. degree can supervise the research project of the students who have enrolled for Honours with Research. One such faculty member can supervise maximum five students in Honours with Research stream.
- The maximum intake of the department for Honours with Research programme is fixed by the department based on the number of faculty members eligible for project supervision, and other academic, research, and infrastructural facilities available.
- If a greater number of eligible students are opting for the Honours with Research programme than the number of available seats, then the allotment shall be based on the existing rules of reservations and merits.

3.3. GUIDELINES FOR THE PROJECT IN HONOURS PROGRAMME AND HONOURS WITH RESEARCH PROGRAMME

- 1. Project can be in Geology or allied disciplines.
- 2. Project should be done individually.
- 3. Project work can be of fieldwork-based/experimental/ theoretical/computational in nature.
- 4. There should be minimum 240 hours of engagement from the student in the Project work in Honours programme.

- 5. There should be minimum 13 hrs./week of engagement (the hours corresponding to the three core courses in Major in semester 8) from the teacher in the guidance of the Project(s) in Honours programme and Honours with Research programme.
- 6. The various steps in project works are the following:
 - ➢ Wide review of a topic.
 - > Investigation on a problem in systematic way using appropriate techniques.
 - Necessary fieldwork and data collection
 - Systematic recording of the work.
 - > Reporting the results with interpretation in a standard documented form.
 - Presenting the results before the examiners.
- 7. During the Project the students should make regular and detailed entries in to a personal log book through the period of investigation. The log book will be a record of the progress of the Project and the time spent on the work, and it will be useful in writing the final report. It may contain experimental conditions and results, ideas, mathematical expressions, rough work and calculation, computer file names etc. All entries should be dated. The Project supervisor should periodically examine and countersign the log book.
- 8. The log book and the typed report must be submitted at the end of the Project. A copy of the report should be kept for reference at the department. A soft copy of the report too should be submitted, to be sent to the external examiner in advance.
- 9. It is desirable, but not mandatory, to publish the results of the Project in a peer reviewed journal.
- 10. The project report shall have an undertaking from the student and a certificate from the research supervisor for originality of the work, stating that there is no plagiarism, and that the work has not been submitted for the award of any other degree/ diploma in the same institution or any other institution.
- 11. The project proposal, institution at which the project is being carried out, and the project supervisor should be prior-approved by the Department Council of the college where the student has enrolled for the UG Honours programme.

3.4. EVALUATION OF PROJECT

- The evaluation of Project will be conducted at the end of the eighth semester by both internal and external modes.
- The Project in Honours programme as well as that in Honours with Research programme will be evaluated for 300 marks. Out of this, 90 marks is from internal evaluation and 210 marks, from external evaluation.

- The internal evaluation of the Project work shall be done through continuous assessment mode by a committee internally constituted by the Department Council of the college where the student has enrolled for the UG Honours programme. 30% of the weightage shall be given through this mode.
- The remaining 70% shall be awarded by the external examiner appointed by the University.
- The scheme of continuous evaluation and the end-semester viva-voce of the Project shall be as given below:

Components of Evaluation of Project	Marks for the Project	Weightage
	(Honours/	
	Honours with Research)	
Continuous evaluation of project work through	90	30%
interim presentations and reports by the		
committee internally constituted by the		
Department Council		
End-semester viva-voce examination to be	150	50%
conducted by the external examiner appointed by		
the university		
Evaluation of the day-to-day records and project	60	20%
report submitted for the end-semester viva-voce		
examination conducted by the external examiner		
Total Marks	300	

INTERNAL EVALUATION OF PROJECT

Sl. No	Components of Evaluation of Project	Marks for the Project (Honours/ Honours with Research)
1	Skill in doing project work	30
2	Interim Presentation and Viva-Voce	20
3	Punctuality and Log book	20
4	Scheme/ Organization of Project Report	20
	Total Marks	90

		Marks for the Project		
Sl. No	Components of Evolution of Project	(Honours/		
51. NO	Components of Evaluation of Project	Honours with Research)		
		12 credits		
1	Content and relevance of the Project,			
	Methodology, Quality of analysis,	50		
	and Innovations of Research			
2	Presentation of the Project	50		
3	Project Report (typed copy), Log	60		
	Book and References	00		
4	Viva-Voce	50		
	Total Marks	210		

EXTERNAL EVALUATION OF PROJECT

4. GENERAL FOUNDATION COURSES

• All the General Foundation Courses (3-credits) in Geology are with only theory component.

4.1. INTERNAL EVALUATION

Sl. No.	Components of Internal Evaluation of a General	Internal Marks of a General Foundation Course of 3-credits in Geology		
	Foundation Course in Geology	4 Theory Modules	Open-ended Module	
1	Test paper/ Mid-semester Exam	10	2	
2	Seminar/ Viva/ Quiz	6	2	
3	Assignment	4	1	
		20	5	
	Total		25	

4.2. EXTERNAL EVALUATION

External evaluation carries about 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the University based on 10-point grading system (refer section 5).

		Total No. of	No. of	Marks for	Ceiling
Duration	Туре		Questions to be	Each	of
		Questions	Answered	Question	Marks
	Short Answer	10	8-10	2	16
1.5 Hours	Paragraph/ Problem	5	4-5	6	24
	Essay	2	1	10	10
Total Marks					50

PATTERN OF QUESTION PAPER FOR GENERAL FOUNDATION COURSES

5. LETTER GRADES AND GRADE POINTS

- Mark system is followed for evaluating each question.
- For each course in the semester letter grade and grade point are introduced in 10-point indirect grading system as per guidelines given below.
- The Semester Grade Point Average (SGPA) is computed from the grades as a measure of the student's performance in a given semester.
- The Cumulative GPA (CGPA) is based on the grades in all courses taken after joining the programme of study.
- Only the weighted grade point based on marks obtained shall be displayed on the grade card issued to the students.

Sl.	Percentage of Marks	Description	Letter	Grade	Range of	Class
No.	(Internal & External	-	Grade	Point	Grade	
	Put Together)				Points	
1	95% and above	Outstanding	0	10	9.50 - 10	First Class
2	Above 85% and below 95%	Excellent	A+	9	8.50 - 9.49	with Distinction
3	75% to below 85%	Very Good	А	8	7.50 - 8.49	
4	65% to below 75%	Good	B+	7	6.50 - 7.49	
5	55% to below 65%	Above Average	В	6	5.50 - 6.49	First Class
6	45% to below 55%	Average	С	5	4.50 - 5.49	Second Class
7	35% to below 45% aggregate (internal and external put together) with a minimum of 30% in external valuation	Pass	Р	4	3.50 - 4.49	Third Class
8	Below an aggregate of 35% or below 30% in external evaluation	Fail	F	0	0-3.49	Fail

LETTER GRADES AND GRADE POINTS

9 Not attending the examination	Absent	Ab	0	0	Fail
---------------------------------	--------	----	---	---	------

- When students take audit courses, they will be given Pass (P) or Fail (F) grade without any credits.
- The successful completion of all the courses and capstone components prescribed for the three-year or four-year programme with 'P' grade shall be the minimum requirement for the award of UG Degree or UG Degree Honours or UG Degree Honours with Research, as the case may be.

5.1. COMPUTATION OF SGPA AND CGPA

• The following method shall be used to compute the Semester Grade Point Average (SGPA): The SGPA equals the product of the number of credits (Ci) with the grade points (Gi) scored by a student in each course in a semester, summed over all the courses taken by a student in the semester, and then divided by the total number of credits of all the courses taken by the student in the semester,

i.e. SGPA (Si) = Σi (Ci x Gi) / Σi (Ci)

where Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the ith course in the given semester. Credit Point of a course is the value obtained by multiplying the credit (Ci) of the course by the grade point (Gi) of the course.

 $SGPA = \frac{Sum of the credit points of all the courses in a semester}{Total credits in that semester}$

Semester	Course	Credit	Letter	Grade	Credit Point
			Grade	point	(Credit x Grade)
Ι	Course 1	3	А	8	3 x 8 = 24
Ι	Course 2	4	B+	7	4 x 7 = 28
Ι	Course 3	3	В	6	3 x 6 = 18
Ι	Course 4	3	0	10	3 x 10 = 30
Ι	Course 5	3	С	5	3 x 5 = 15
Ι	Course 6	4	В	6	4 x 6 = 24
	Total	20			139
	SGPA				139/20 = 6.950

ILLUSTRATION – COMPUTATION OF SGPA

• The Cumulative Grade Point Average (CGPA) of the student shall be calculated at the end of a programme. The CGPA of a student determines the overall academic level of the student in a programme and is the criterion for ranking the students.

CGPA for the three-year programme in CUFYUGP shall be calculated by the following formula.

$$CGPA = \frac{Sum of the credit points of all the courses in six semesters}{Total credits in six semesters (133)}$$

CGPA for the four-year programme in CUFYUGP shall be calculated by the following formula.

 $CGPA = \frac{Sum of the credit points of all the courses in eight semesters}{Total credits in eight semesters (177)}$

- The SGPA and CGPA shall be rounded off to three decimal points and reported in the transcripts.
- Based on the above letter grades, grade points, SGPA and CGPA, the University shall issue the transcript for each semester and a consolidated transcript indicating the performance in all semesters.

Major Courses

Semester I

Programme	B. Sc. Geology	B. Sc. Geology							
Course Code	GEL1CJ101								
Course Title	INTRODUCTION	INTRODUCTION TO GEOLOGY							
Type of Course	Major	Major							
Semester	Ι								
Academic	100 - 199								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	3	-	2	75				
Pre-requisites	NIL								
Course	This course serves as	s an introduc	ction to the f	ield of geolog	gy, covering				
Summary	fundamental concepts	s related to E	arth's format	ion, dimensio	ns, dynamic				
	evolution, geochrono	logy, and ma	jor geologica	ıl hazards.					

CO	CO Statement	Cognitive	Knowledge	Evaluation
<u> </u>		Level*	Category#	Tools used
CO1	Students will have an understanding of the basic principles and concepts of geology, including the formation of Earth and its dimensions.	U	F	Exam
CO2	Students will be able to explain the theories of Earth's formation and its physical dimensions, including the structure and composition of Earth's interior layers.	Ар	С	Home assignments
CO3	Students will analyze the dynamic processes that have shaped Earth's surface and interior over geological time scales, including plate tectonics, mountain building, erosion, and sedimentation.	An	Р	Seminar presentations
CO4	Students will be able to interpret geochronological data and understand the methods used to determine the ages of rocks	Е	М	Home assignments
CO5	Students will identify and describe major geological hazards, including earthquakes, volcanic eruptions, and understand the geological processes that cause them.	Ар	F	Assignment
CO6	Students will evaluate strategies for mitigating the impacts of geological hazards on society and the environment.	E	М	Practical Assignment
* - Re	member (R), Understand (U), Apply (Ap), A	nalyse (An), Ev	valuate (E), Create	(C)
	ctual Knowledge(F) Conceptual Knowledge ((C) Procedural	Knowledge (P) Me	etacognitive
Know	ledge (M)			

Module	Unit	Content	Hrs	Marks		
Ι		Introduction to Geology	10			
	1	Geology: The Science of Earth	2			
	2	The Development of Geology	3	15		
	3	2				
	4	Plate Tectonics and Scientific Inquiry	3			
II		Earth's Formation and Dimensions	15	_		
	5	Earth's Spheres	3	_		
	6	Earth System	3	_		
	7	Evolution of Earth	2	20		
	8	Formation of Earth's layered structure	2	_		
	9	Earth's Internal Structure	2			
	10	Layers defined by Physical Properties	3			
III		Changing Earth & Geochronology	10			
	11	The Rock Cycle	2			
	12	12 The face of Earth. Mountain building. Origin & evolution of ocean				
		floor		_		
	13	Age of the earth	2	15		
	14	Dating methods: Absolute (radiometric) and relative (stratigraphy)	2			
	15	Application of dating methods in constructing the Geological Time	1			
		Scale		-		
	16	Overview of eras, periods, epochs – major geological events.	1			
IV		Introduction to Major Geological Hazards	10	-		
	17	Volcanoes & Volcanic Hazards	1			
	18	Nature of Volcanic Eruptions and Products	1			
	19	Types of Volcanoes & Volcanic Landforms	2	20		
	20	Earthquakes & Earthquake Hazards	2			
	21	Seismology, Seismic Waves, Earthquakes & Plate Boundaries	2			
	22	Earthquake Destruction. Prediction, Forecast and Mitigation	2			
V		Practical	30			
	1	Lab exercises to apply the concepts of interior of earth, earth's	20			
		magnetism and plate tectonics. Exploring geologic features using		20		
		Google Earth.				
	2	Introduction to Topographic Maps. Exercises involving contour lines.	4			
	3	Application of Gt.Aide (Academy) Freeware	6			

Detailed Syllabus: INTRODUCTION TO GEOLOGY

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	_	_	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)								
	Components of Internal Evaluation	4 Theory Modules (10)	Practical (20)						
1	Test paper/ Continuous Evaluation of Practical Exercises	5	10						
2	Seminar/ End Sem Exam &Viva-Voce	3	7						
3	Assignment / Lab Record	2	3						

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	End Semester Examinations
CO 1	1			1
CO 2	1			1
CO 3	1			✓
CO 4		<i>✓</i>		<i>✓</i>
CO 5		1		<i>✓</i>
CO 6			<i>\</i>	

References:

- 1. Condie, K.C., 2015. *Earth as an Evolving Planetary System*, 3rd Edition, Academic Press, USA.
- Hudson, T., 2012. Living with Earth An Introduction to Environmental Geology. PearsonEducation Inc., New Jersey, USA
- 3. Marshak, S., 2001. Earth: Portrait of a Planet. W.W. Norton & Co., Inc., USA
- 4. Wicander, R. and Monroe, J., 2006. *Essentials of Geology*. 4th Edition, Thomson LearningInc., USA.
- **5.** Tarbuck, E.J. and Lutgens, F.K., 2008. Earth: An Introduction to Physical Geology. 9th Edition, Pearson Education, Inc., New Jersey, USA

Semester II

Programme	B. Sc. Geology								
Course Code	GEL2CJ101								
Course Title	PROCESSES AT THE EARTH'S SURFACE								
Type of Course	Major	Major							
Semester	II								
Academic Level	100 - 199								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	3	0	2	75				
Pre-requisites	NIL								
Course	This course summarises the actions of various geological agents								
Summary	responsible for the for	responsible for the formation of landforms. The processes and features							
	produced thereof is ex	plained in th	is geomorpho	ology course.					

.

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used					
CO1	Assess the various exogenous process in molding the earth's surface	Ev	С	Exams/ Quiz					
CO2	Examine the origin, types, and effects of mass wasting	An	С	Assignment/ Exams					
CO3	Distinguish various morphological features resulting from geological actions of running water.	Un	С	Practical Assignment/Exams					
CO4	Describe the basic concepts on the distribution and occurrence of groundwater	An	С	Assignments/ Exams					
CO5	Distinguish various morphological features resulting from geological actions of wind and glacier.	An	С	Practical Assignment /Exams					
CO6	Distinguish various morphological features of ocean floor and coastal region resulting from geological processes	Un	Р	Practical Assignment/ Internal exams					
# - Fac	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 								

Module	Unit Content	Hrs	Marks					
	Mass Wasting & Running Water	10						
	1 The Importance of Mass Wasting. Landslides as Geologic Hazards	1						
	2 Mass Wasting in Landform Development	1						
	3 Controls and Triggers of Mass Wasting							
Ι	4 Hydrologic Cycle. Drainage basin and drainage patterns	2	25					
	5 Graded, Braided, and Meandering streams	1						
	6 Geological work of streams: Erosional and depositional fluvial landforms	2						
	7 Base level, Rejuvenation, Knick Points, River Piracy	1						
	Groundwater	10						
TT	8 Underground water: Occurrence. Water table, porosity, permeability	3						
II	9 Aquifers: Confined and unconfined, aquicludes, aquitard, and aquifuge	e. 3	10					
	10 Natural Springs and types	2						
	11 Geological work of groundwater, Karst Topography	2						
	Glacier & Wind	15						
	10 Ice Sheets. Types of glaciers	2						
	11 Formation and movement of glacial ice	2						
III	12 Glacial erosion and features produced by glacial erosion	3	20					
	13 Glacial deposits. Concept of ice ages.	2	20					
	14 Global distribution of deserts. Formation of deserts.	2						
	15 Geological actions of wind: erosion, transportation & deposition	2						
	16 Processes and features associated with wind action	2						
	Oceans	10						
	17 Oceans and Seas –distribution over earth	1						
IV	18 Waves, tides, currents, CCD, Marine sediments.	2						
	19 Types of continental margins	1	15					
	20 Ocean bottom topography.	2						
	21 Shoreline processes	2						
	22 Shoreline features	2						
	Practical	30						
	1 Stream ordering using toposheets	5						
V	2 Google Earth application in understanding the global distribution of glaciers, deserts and oceans	20	20					
	3 Calculations involving sediment and water movement in streams	5						

Detailed Syllabus: PROCESSES AT THE EARTH'S SURFACE

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)											
	Components of Internal Evaluation	Practical (20)										
1	Test paper/ Continuous Evaluation of Practical Exercises	5	10									
2	Seminar/ End Sem Exam &Viva-Voce	3	7									
3	Assignment / Lab Record	2	3									

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	End Semester Examinations
CO 1	1			\checkmark
CO 2	✓			✓
CO 3	✓			✓
CO 4		1		✓
CO 5		1		✓
CO 6			~	

References:

1. Tarbuck, E.J. and Lutgens, F.K., 2008. Earth: An Introduction to PhysicalGeology. 9th Edition, Pearson Education, Inc., New Jersey, USA.

2. Wicander, R. and Monroe, J., 2006. Essentials of Geology. 4th Edition, Thomson Learning Inc., USA

Semester III

Programme	B. Sc. Geology										
Course Code	GEL3CJ201										
Course Title	INTRODUCTORY	INTRODUCTORY GEOINFORMATICS									
Type of Course	Major	Major									
Semester	Ι										
Academic	200 - 299	200 - 299									
Level											
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week	per week	Hours						
	4	4	-	-	60						
Pre-requisites	NIL										
Course											
Summary											

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used							
CO1	Students will acquire knowledge of the key sciences and technologies involved in geoinformatics	U	F	Exam							
CO2	Students will learn about the origin and development of GIS, its components and its core functions	Ap	С	Quiz							
CO3	Students will understand the advantages and limitations of different GIS platforms	An	Р	Assignment							
CO4	Students will understand the principles and techniques of map-making, and map projection types	Е	М	Viva							
CO5	Students will grasp the fundamental concepts of remote sensing	Ар	F	Assignment							
CO6	remote sensing										
	emember (R), Understand (U), Ap										
	ctual Knowledge(F) Conceptual cognitive Knowledge (M)	Kilowledge (C) P	Tocedural Knowledg	ge (r)							

Marks Module | Unit | Content Hrs **Introduction to GIS** Geoinformatics – Definition & scope 1 2 Sciences and technologies involved – Remote Sensing, GIS, Cartography, Photogrammetry Origin and development of GIS 3 I 4 GIS - definition 15 20 5 Components - hardware, software, people, methods, data Functions – data input and output, visualization, editing, analysis, map 6 design 7 Desktop GIS, mobile GIS, web GIS Limitations of GIS 8 Maps 9 Maps – to convey location and extent, characteristics, and spatial relationships Π 10 Classification of maps – topographic maps, thematic maps, cadastral maps 10 15 Elements of a map 11 12 Classification of projection – Cylindrical, Conical, Azimuthal 13 Map design **Introduction to Remote Sensing** 14 History of Remote Sensing Ш 15 Introduction to aerial photography: overlaps, flight lines, drift, crab, tilt, dead ground Geometry of aerial photographs - scale, principal point, perspective 16 centre, fiducial marks, nadir, focal length, airbase, photo base, isocentre, 15 20 relief displacement. 17 Vertical & oblique aerial photographs Visual image interpretation & elements of interpretation - tone, texture, 18 shape, association, pattern, shadow, size 19 Stereoscopy - Pocket Stereoscope, Mirror Stereoscope, Parallax Bar **Concept of Remote Sensing** Stages in Remote Sensing 20 21 Energy Source – EMR, characteristic of EMR –wave nature and particle nature. EMR spectrum 8 15 IV 22 Blackbody radiation, Stefan Boltzmann's law, Wein's displacement law 23 Interaction of EMR with atmosphere – reflection, scattering, absorption 24 Interaction of EMR with earth's surface features – reflection, transmission 25 Spectral Reflectance of land covers – Vegetation, Soil, Water **Open Ended Module** V Interpretation of aerial photographs 1 12 10 2 Interpretation of toposheets Downloading of toposheets from various websites 3

Detailed Syllabus: INTRODUCTORY GEOINFORMATICS

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

INTE	RNAL MARK SPLIT-UP (TOTAL	30 MARKS)										
	Components of Internal Evaluation4 Theory Modules (20)Open ended Module (10)											
1	Test paper/ Mid semester Exam	10	4									
2	Seminar/ Viva/ Quiz	6	4									
3	Assignment	4	2									

٦

Mapping of COs to Assessment Rubrics:

	Internal Exam	Internal Exam Assignment		End Semester Examinations
CO 1				
CO 2	↓ ↓			√
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

References:

1. Lo, C.P. and Yeung, A.K.W., 2007. Concepts and Techniques in GeographicInformation Systems.

Programme	B. Sc. Geology									
Course Code	GEL3CJ202									
Course Title	CRYSTALLOGRA	PHY & STR	RATIGRAPH	ΗY						
Type of Course	Major									
Semester	III									
Academic	200 - 299									
Level										
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours					
	4	3	-	2	75					
Pre-requisites	NIL									
Course	The course has two	oarts. First pa	art deals with	n classification	n of crystals					
Summary	into various systems	s and classe	s. Second p	art is an intr	oduction to					
	geoinformatics.									

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used						
CO1	Students will be able to identify the basic crystal systems	U	F	Exam						
CO2	Students will be able to identify the different forms present in crystals, based on their symmetry elements	Ар	С	Quiz						
CO3	The students will be able to define various laws of stratigraphy	An P Assignn								
CO4	The students will be able to differentiate physical and biological criteria of correlation	Е	С	Viva						
CO5	The students will be able to explain major events of mass extinction	Ар	F	Assignment						
CO6										
# - Fa	emember (R), Understand (U), Ap actual Knowledge(F) Conceptual F cognitive Knowledge (M)									

Detailed Syllabus: CRYSTALLOGRAPHY & STRATIGRAPHY

Module	e Unit Content				
		Introduction to Crystallography and Symmetry Elements	10		
	1	Scope and applications of crystallography. Symmetry elements in	1		
Ι		crystallography		15	
1	2	Crystallographic axes, notation, parameter system of Weiss and Miller	2	15	
		indices. Axial ratio	ļ		
	3	Laws of crystallography	2		
	4	Symmetry elements and forms of Normal, pyritohedral, tetrahedral,			
		and plagiohedral classes in the Cubic system	<u> </u>		
	5	Symmetry elements and forms of Normal, Hemimorphic,			
		Tripyramidal, Sphenoidal, and Trapezohedral classes in the Tetragonal			
		system	15		
	6	Symmetry Elements and Forms in Various SystemsSymmetry elements and forms of Normal, Hemimorphic,	3		
	0	Tripyramidal, Trapezohedral, Rhombohedral, Rhombohedral	5		
		Hemimorphic, and Trapezohedral classes in the Hexagonal system			
тт	7	Symmetry elements and forms of Normal and Sphenoidal classes in	4	25	
II	,	the Orthorhombic system	'	25	
	8	Symmetry elements and forms of Normal classes in the Monoclinic	4		
	-	and Triclinic systems			
	9	Twin crystals. Definitions and effects of twinning	4		
	10	Laws of twinning, composition plane, twinning plane, and twinning			
		axis			
	11	Indices of twins: simple and repeated (polysynthetic twins), contact			
		and penetration twins (secondary twins)			
		Stratigraphy	8		
	12	Laws of Stratigraphy: Concept of uniformitarianism	2		
	13	Law of order of superposition, Law of faunal succession and Law of	1	10	
III	1.4	original horizontality		12	
	14	Principle of Lateral Continuity, Principle of Inclusion, Law of cross-	2		
	15	cutting relationship Correlation: Physical criteria of correlation	1		
	15	Biological criteria of correlation and homotaxis	1		
	10	Stratigraphy	12		
	17	Major events of Mass extinction: Ordovician-Silurian and late	2		
	17	Devonian extinction events	2		
	18	Permian- Triassic and Cretaceous- Tertiary extinction events	3		
	19	Facies and facies changes: Litho and bio facies	3		
TT 7	20	Break in stratigraphic records: Unconformities and diastems	3	10	
IV	21	Stratigraphic classification: Biostratigraphic classification: Biozones,	3	18	
		biohorizon, index fossil. Range zone, taxon range zone, concurrent			
		range zone, interval zone, assemblage zone, Acme zone			
	22	Lithostratigraphic classification: Group, Formation, Member, Bed.	3		
		Chronostratigraphic classification: Eonothem, erathem, system, series,			
		stage			
		Practical	30	10	
V	1	Practical involving identification of crystal forms of normal classes of			
		all systems			

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)								
	Components of Internal Evaluation4 Theory Modules (10)Practical (20)								
1	Test paper/ Continuous Evaluation of	5	10						
	Practical Exercises								
2	Seminar/ End Sem Exam &Viva-Voce	3	7						
3	Assignment / Lab Record	2	3						

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	End Semester Examinations
CO 1	1			✓
CO 2	1			 Image: A start of the start of
CO 3	✓			\checkmark
CO 4		✓		\checkmark
CO 5		✓		\checkmark
CO 6			1	

References:

- 1. Borchardt-Ott, W., 2011. Crystallography- An Introduction. Springer Heidelberg, 355p.
- 2. Dana, F.S., 1955. A Text Book of Mineralogy. Asia publishing House, Wiley.
- 3. Klen, C., Hurlbut, C.S., 1985. Manual of Minerology, John Wiley & Sons
- 4. Perkins, D., 2015. Mineralogy. Pearson Education (3Ed), 568 p
- 5. Boggs, S., 2016. Principles of Sedimentology and Stratigraphy. Pearson Education. 568 p.
- 6. Brookfield, M.E., 2003. Principles of Stratigraphy. Wiley-Blackwell, 340 p.
- 7. Nichols, G., 2016. Sedimentology and Stratigraphy. Wiley-Blackwell, 419 p.

Semester IV

Programme	B. Sc. Geology						
Course Code	GEL4CJ203						
Course Title	GEOINFORMATIC	GEOINFORMATICS & FIELD GEOLOGY - I					
Type of Course	Major						
Semester	IV						
Academic	200 - 299						
Level							
Course Details	ils Credit Lecture Tutorial Practical To						
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Students should have	completed a	ll the core co	urses in the pr	revious 3		
	semesters.						
Course	Field Geology is a h	ands-on cou	rse designed	to provide un	ndergraduate		
Summary	students with practica	al experience	in geologica	l fieldwork. T	hrough field		
	trips, mapping exercises, and data collection activities, students will						
		learn essential field techniques, geological mapping skills, and					
	interpretation of geol	ogical feature	es and structu	ires.			

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Demonstrate proficiency in field techniques for geological mapping and data collection.	U	F	Exam			
CO2	Identify and describe geological formations, rock types, and structural features in the field.	Ap	С	Quiz			
CO3	Apply the techniques of GIS for map making	An	Р	Assignment			
CO4	Apply the techniques of remote sensing for field based studies	E	М	Viva			
CO5	Collaborate effectively in fieldwork teams and communicate geological findings through field reports and presentations.	Ар	F	Assignment			
CO6	Develop critical thinking and problem-solving skills through hands-on field experiences.	E	М	Assignment			
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Module	Unit	Content	Hrs	Marks					
	Introduction	· ·	6						
	1	I Importance of field work in geological exploration							
	2	Introduction to field equipment and tools	1	10					
Ι	3	Principles of geological mapping	1	10					
	4	Topographic map interpretation	1						
	5	Compass and GPS navigation techniques	2						
	Geological Mappi	ng	10						
	6	Use of Brunton Compass	2						
II	7	7 Measurement and recording of structural data in the field - Strike & Dip							
	8	Introduction to structural map symbols	2	16					
	9	Field identification of common minerals	2						
	10	Hand specimen identification – important textures in	2						
	10	igneous, sedimentary & metamorphic rocks	2						
		igneous, seamentary emetamorphic rocks	14						
	11	Topographical maps, Thematic maps, Geologic maps &	2						
	11	Existing digital map sources	2						
	12	Data models in GIS. Spatial data model – Raster &	3						
	12	Vector. Attribute data model – hierarchical, network,	5						
III		relational.		24					
	13	Data base management system. Data management in GIS	3						
			2						
	14Data editing: Detecting and correcting errors;15Data reduction, Generalization, Transformation;		2						
	16	Rubber Sheeting and edge matching	2						
		ires & Measurements	15						
	17	Types of platforms – Groundborne, Airborne ,Space-	2						
		borne.							
IV	18	Orbital elements - six elements of Keplerian orbit.	2						
	19	Types of satellite orbits – Sunsynchronous,	2	•					
		Geosynchronous		20					
	20	GNSS – GPS, GAGAN	4						
	21	Classification of sensors. Multispectral sensors –	2	1					
		pushbroom & whiskbroom scanners. Atmospheric							
		sensors, SONAR, LiDAR							
	22	Sensor parameters – spatial, spectral, radiometric,	3						
		temporal. Hyperspectral imaging							
		Practical	30	10					
X 7	The practical comp	onent of this course will be carried out as a fieldwork	1						
\mathbf{V}	1 1	ng various geological formations across India. The actual							
		should be 6 to 7 days excluding travel period.							

	8	-				-	-		-	-			
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation					
-	Nil					
1	Slightly / Low					
2	Moderate / Medium					
3	Substantial / High					

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)								
	Components of Internal Evaluation	4 Theory Modules (10)	Practical (20)						
1	Test paper/ Mid semester Exam	5	Mark for practical work						
2	Seminar/ Viva/ Quiz	3	will be awarded based on students' performance						
3	Assignment	2	during field work.						

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	End Semester Examinations
CO 1	✓			\checkmark
CO 2	✓			✓
CO 3	✓			1
CO 4		1		✓
CO 5		1		✓
CO 6			1	

References:

- Basic Geological Mapping. Richard J. Lisle, Peter Brabham, and John W. Barnes (2011), Wiley-Blackwell. ISBN: 978-0470686345
- Geological Field Techniques. Tom McCann (2012). Springer. ISBN: 978-9400739156
- Field Geology Illustrated. Terry S. Maley (1994), Mineral Land Publications ISBN: 978-0962517130
- Geology in the Field. Robert R. Compton (1985) John Wiley & Sons, ISBN: 978-0471842245
- Field Geology. Frederic H. Lahee (1961) McGraw-Hill, ISBN: 978-0070355918.

Programme	B. Sc. Geology					
Course Code	GEL4CJ204					
Course Title	MINERALOGY					
Type of Course	Major					
Semester	IV					
Academic	200 - 299					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	3	-	2	75	
Pre-requisites	GEL1CJ101 - Introdu	uction to Geo	ology			
Course	This course introduces the students to the world of minerals. The					
Summary	microscopic observa	microscopic observation and description of important rock forming				
	silicates are the core	of this course				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Students will develop proficiency in identifying hand specimens of minerals.	U	F	Exam
CO2	Students will develop proficiency in using petrographic microscopes and identify minerals in thin sections	Ар	С	Quiz
CO3	Students will learn to identify common rock-forming minerals based on their optical properties	An	Р	Assignment
CO4	Students will be able to classify minerals into appropriate mineral groups based on their chemical composition and other important properties.	E	М	Viva
CO5	Students will understand the significance of mineralogy in the context of geological processes	Ap	F	Assignment
CO6	Students will understand the role of minerals in rock and ore formation.	E	М	Assignment
# - Fa	emember (R), Understand (U), Apply (A actual Knowledge(F) Conceptual Know cognitive Knowledge (M)			

Detailed Syllabus: MINERALOGY

Module	Unit	Content	Hrs	Marks		
		Physical and Chemical Mineralogy	9			
	1	Definition of Mineral . Scope and aim of Mineralogy.	2			
	2	Crystal Coordination - the making of minerals	1			
	3	Compositional variation and coupled ionic substitution, Isomorphism,	2			
т		Polymorphism, Pseudomorphism.		15		
Ι	4 Solid solution and ex- solution in minerals.					
	5 Physical properties of minerals- form, colour, streak, lustre, hardness,					
		cleavage, fracture, specific gravity, tenacity, transparency				
	6	Electrical and gagnetic properties- pyro and piezo electricity, ferri-,	1			
		para-, and diamagnetism.				
		Petrological Microscopy and Optical Properties of Minerals	10			
	7	Nature of light, Ordinary and polarized light, Refraction and reflection	1			
	8	Refractive index, critical angle, and total internal reflection	1			
	9	Polarisation, double refraction, Nicol Prism	2	• •		
II	10	Petrological microscope and its parts	1	20		
	11	Optical properties of minerals	2			
	12	Properties under open & crossed nicols				
	13	Isotropic and anisotropic minerals	1			
		6				
	14	2				
TTT	15	Classification and structural diversity of silicate minerals Chemistry, structure, and physical properties of Olivine & Garnet	2	10		
III		families		10		
	16	Chemistry, structure, and physical properties of Epidote group &	2			
		Aluminium silicates				
		Study of mineral groups	20			
	17	Chemistry, structure, and physical properties of Pyroxenes &	3			
		Pyroxenoids				
	18	Structure, chemistry and physical properties of Amphibole family	3			
	19	Structure, chemistry, and physical properties of Mica, Chlorite, and	3			
		polymorphs of Quartz.		25		
IV	20	Structure, chemistry, and physical properties of Feldspars,	4	25		
		Feldspathoids, and Spinel.				
	21	Chemistry, optical and physical properties of Scapolite, Cordierite,	4			
		Talc, Serpentine, Calcite, Dolomite, Topaz, Staurolite, Beryl,				
		Tourmaline, Fluorite, Apatite, Zircon, Rutile, Sphene, Zeolites, and				
		Corundum				
	22	Modes of occurrences and industrial uses.	3			
		Practical	30			
V	1	Identification of hand specimens of important rock forming minerals	15	10		
	2	Identification of thin sections of important rock forming minerals	15			

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)											
	Components of Internal Evaluation	4 Theory Modules	Practical (20)									
		(10)										
1	Test paper/ Continuous Evaluation of	5	10									
	Practical Exercises											
2	Seminar/ End Sem Exam &Viva-Voce	3	7									
3	Assignment / Lab Record	2	3									

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	End Semester Examinations
CO 1	1			\checkmark
CO 2	✓			✓
CO 3	✓			✓
CO 4		✓		✓
CO 5		✓		\checkmark
CO 6			1	

References:

- 1. Dyar, M.D., Gunter, M.E., 2007. Mineralogy and Optical Mineralogy. Min. Soc. America, 705p.
- 2. Demange, M., 2012. Mineralogy for Petrologists: Optics, Chemistry, and Occurrence of Rock Forming Minerals. CRC Press (Taylor & Francis Group), 182p.
- 3. Nesse, W.D., 2012. Introduction to Optical Mineralogy. Oxford University Press; 4 E dition, 384p.
- 4. Pichler, H., Riegraf, C.S., 2011. Rock-forming Minerals in Thin Section. Springer, 220 p.
- 5. Deer, W.A., Howie, R.A., Zussman, J., 2013. Introduction to the Rock-forming Minerals. Mineralogical Society of Great Britain & Ireland, 510 p.

Programme	B. Sc. Geology									
Course Code	GEL4CJ205	GEL4CJ205								
Course Title	SEDIMENTARY PETROLOGY & PALAEONTOLOGY									
Type of Course	Major	Major								
Semester	IV									
Academic	200 - 299									
Level										
Course Details	Credit Lecture Tutorial Practical Tota									
		per week	per week	per week	Hours					
	4	3	-	2	75					
Pre-requisites	Basic knowledge on s	sedimentation	n, invertebrat	e organisms, a	and					
	taxonomic classificat	ion of organi	sms							
Course	The course deals w	with various	sedimentary	y processes,	sedimentary					
Summary	textures & structures	s, and classi	fication of s	edimentary ro	ocks. It also					
	discusses the taxo	nomic clas	sification,	geological h	istory, and					
	stratigraphic import	ance of the	e invertebra	te fossils o	f Protozoa,					
	Coelenterata, Hemich	nordata, Mol	lusca, Brachi	ipoda, Echino	dermata and					
	Arthropoda.									

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Illustrate various sedimentary processes, sedimentary textures and structures, and classify the sedimentary rocks	U	F&C	Class tests/Quiz
CO2	Distinguish different sedimentary depositional environments and sedimentary deposits	U	С	Class tests/Quiz/ Seminars
CO3	Discuss the general morphology, classification and the stratigraphic importance of the phylum: Protozoa, Coelenterate and Hemichordata	R	F	Class tests/ Assignments
CO4	Illustrate the general morphology, classification and the stratigraphic importance of the phylum: Mollusca, and Brachiopoda	R	F	Class tests/ Assignments
CO5	Describe the general morphology, classification and the stratigraphic importance of the phylum: Echinodermata and Arthropoda	R	F	Class tests/ Assignments
CO6	Distinguish the			

sedimentary rocks based on their physical and optical properties, and identify the	Ар	F&P	Lab tests				
fossils of invertebrate organisms							
* - Remember (R), Understand (U),	Apply (Ap), Anal	yse (An), Evaluate (l	E), Create (C)				
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)							
Metacognitive Knowledge (M)							

Detailed Syllabus: SEDIMENTARY PETROLOGY & PALAEONTOLOGY

Module	Unit	Content	Hrs	Marks			
		Sedimentary processes, sedimentary textures & structures, and sedimentary rocks	10				
I	1 Sedimentary processes: disintegration & decomposition of rocks, transportation, deposition, diagenesis						
	2 Textures of sedimentary rocks: clastic and non-clastic textures						
	3 Structures of sedimentary rocks: mechanical, chemical, and organic structures		2				
	4	Classification of sedimentary rocks	3				
]	Depositional Environments and Types of Sedimentary Deposits	12				
	5	Introduction to depositional environments: terrestrial, marine, and transitional	4				
	6	Mechanical sedimentary deposits: rudaceous, arenaceous, and argillaceous	2				
Π	7	Chemical sedimentary deposits: siliceous, carbonaceous, ferruginous, and salt deposits	2	20			
	8	Organic sedimentary deposits: calcareous, siliceous, phosphatic and carbonaceous deposits	2				
	9	Residual sedimentary deposits: terra rossa, clay, laterite, bauxite, and soils, and heavy mineral deposits	2				
	Inve	rtebrate Paleontology - Protozoa, Coelenterata, and Hemichordata	10				
	10	Fossils & Fossilisation: Petrifaction, permineralization, carbonization, recrystallization, silicification, amber preservation, mummification. Types and uses of fossils.	4				
	11						
III	12	Phylum Coelenterata - Class Anthozoa Zoological features, general morphology: corallum, corallite, theca, chambers, septa, fossula, columella; and septal developments	2	20			
	13	Classification of corals - tabulate corals and rugose corals, their evolution, geological distribution and stratigraphic importance	1				
	14	Subphylum Hemichordata - Class Graptozoa.General morphology: rhabdosome, stipe, theca, common canal, nema, virgula, sicula, angle of divergence, and central disc Classification, geological distribution and stratigraphic importance of Graptozoa	1				
IV		Invertebrate Paleontology - Mollusca and Brachiopoda	13	20			

	15	Phylum Mollusca - Class Pelecypoda	2	
		Morphology: umbo, hinge line, ligament, lunule, escutcheon, adductor		
		impressions, pallial line, pallial sinus, dental patterns, ornamentation		
	16	1		
	17	Phylum Mollusca - Class Gastropoda	2	
		General morphology: shell forms, whorl, spire, spiral angle, suture,		
		aperture, columella, umbilicus, peristome and types of coiling		
	18	Phylum Mollusca - Class Cephalopoda	2	
		General morphology, siphuncle, septa, septal necks, connecting rings,		
		chambers, suture lines, shell forms and ornamentation		
	19	Classification and geological history of Cephalopoda	1	
	20	Phylum Mollusca - Phylum Brachiopoda	2	
		General morphology: umbo, hinge line, pedicle opening, delthyrium,		
		deltidium, pseudo deltidium, brachial skeleton and ornamentation		
	21	Classification and geological history of Brachiopods	1	
	22	Phylum Arthropoda - Class Trilobita	2	
		General morphology: Cephalon, thorax and pygidium		
		Classification and geological history of Trilobites		
		Practical	30	10
V	1	Megascopic and microscopic identification of sedimentary rocks	20	
	2	Megascopic identification of invertebrate fossils	10	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)							
	Components of Internal Evaluation	4 Theory Modules (10)	Practical (20)					
1	Test paper/ Continuous Evaluation of	5	10					
	Practical Exercises							
2	Seminar/ End Sem Exam &Viva-Voce	3	7					
3	Assignment / Lab Record	2	3					

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	~			✓
CO 2	✓	✓		✓
CO 3	✓	1		✓
CO 4				✓
CO 5		1		✓
CO 6	1			1

References:

- 1. Boggs, S., 2016. Principles of Sedimentology and Stratigraphy. Pearson Education. 568p.
- 2. Prothero, D.R., Schwab, F., 2013. Sedimentary Geology. W.H. Freeman, 593 p
- 3. Henry Woods: Invertebrate palaeontolgy Cambridge.
- 4. Raup, D.M. and Stanely, M.S.: Principles of Palaeontology, CBS Publishers.
- 5. Moore, R.C., Laliker, C.G.&Fishcher, A.G.: Invertebrate Fossils, Harper brothers
- Shrock. R.R. and Twenhofel , W.H 1953: Principles of invertebrate Palaeontology, Amold publication

Semester V

Programme	B. Sc. Geology					
Course Code	GEL5CJ301					
Course Title	GEOINFORMATIC	CS & FIELD	O GEOLOG	Y - II		
Type of Course	Major					
Semester	V					
Academic	300 - 399					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	3	-	2	75	
Pre-requisites	GEL4CJ203 Field Ge	eology -I				
Course	Field Geology - I	I is a har	nds-on cours	se designed	to provide	
Summary	undergraduate stude	ents with	practical ex	xperience in	geological	
	fieldwork. Through field trips, mapping exercises, and data collection					
	activities, students	will learn e	essential fiel	d techniques	, geological	
	mapping skills, and in	nterpretation	of geologica	l features and	structures.	

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Demonstrate proficiency in field techniques for geological mapping and data collection.	U	F	Exam			
CO2	Identify and describe geological formations, rock types, and structural features in the field.	Ap	С	Quiz			
CO3	Apply principles of geoinformatics for geological mapping	An	Р	Assignment			
CO4	Evaluate the geological features of a terrain using published geological maps	Е	М	Practical Assignment			
CO5	Collaborate effectively in fieldwork teams and communicate geological findings through field reports and presentations.	Ар	F	Assignment			
CO6	Develop critical thinking and problem-solving skills through hands-on field experiences.	E	М	Assignment			
*	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Module	Unit	Content	Hrs	Marks			
		Geological Mapping	12				
	1	Use of aerial photographs and satellite imagery in	3	1			
Ι		geological mapping					
	2	Integration of field observations with geospatial data	3	12			
	3	Interpretation of geological structures using Google 3					
		Earth data					
	4	Introduction to mobile applications (App) in Field	3				
		Geology					
		Rock identification in the field	8				
	5	Identification and classification of igneous and	3				
		metamorphic rocks					
	6	Petrographic analysis of igneous and metamorphic	3	12			
II		textures		12			
	7	Charateristic features of igneous and metamorphic	3				
		terrains					
	8	Case study of structural features in any one terrain	3				
		of Remote Sensing & Digital Image Processing	10				
	9	Optical remote sensing – panchromatic, multispectral,	2				
		superspectral & hyperspectral					
	10	Thermal remote sensing: principles and applications	2	20			
III	11	Microwave remote sensing : Active & Passive	2	20			
111	12	Radars: Synthetic Aperture Radar & Real Aperture	2				
		Radar					
	13	Introduction to digital image processing	2				
	14	Preprocessing – Geometric and radiometric corrections					
		Image registration, enhancement & filtering					
		Image classification: Supervised & Unsupervised					
		GIS Operations	19				
	14	DBMS & Data management in GIS	2				
	15	Topology and spatial relationships- adjacency,	2				
		containment, connectivity					
	16	Database query	2				
IV	17	Geospatial measurement	2				
1 1	18	Overlay operations	2	26			
	19	Network analysis	2				
	20	Surface analysis	2				
	21	Introduction to Bhukosh Portal of Geological survey of	2				
		India					
	22	Analysis of the Geological details from any one map	3				
		downloaded from Bhukosh portal					
		Practical	30	10			
V		onent of this course will be carried out as a fieldwork					
•	1 0	g various geological formations across India. The actual					
	days of field work s	hould be 6 to 7 days excluding travel period.					

Detailed Syllabus: GEOINFORMATICS & FIELD GEOLOGY - II

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)						
	Components of Internal Evaluation	4 Theory Modules (10)	Practical (20)				
1	Test paper/ Mid semester Exam	5	Mark for practical work				
2	Seminar/ Viva/ Quiz	3	will be awarded based on students' performance in				
3	Assignment	2	the fieldwork.				

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	End Semester Examinations
CO 1				
CO 2	√			√
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

References:

- 1. Basic Geological Mapping. Richard J. Lisle, Peter Brabham, and John W. Barnes (2011), Wiley-Blackwell. ISBN: 978-0470686345
- 2. Geological Field Techniques. Tom McCann (2012). Springer. ISBN: 978-9400739156
- 3. Field Geology Illustrated. Terry S. Maley (1994), Mineral Land Publications ISBN: 978-0962517130
- 4. Geology in the Field. Robert R. Compton (1985) John Wiley & Sons, ISBN: 978-0471842245
- 5. Field Geology. Frederic H. Lahee (1961) McGraw-Hill, ISBN: 978-0070355918.

Programme	B. Sc. Geology	B. Sc. Geology					
Course Code	GEL5CJ302						
Course Title	IGNEOUS PE	TROLOGY					
Type of Course	Major						
Semester	V						
Academic	300 - 399						
Level							
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours		
	4	4	-	2	75		
Pre-requisites	NIL		•				
Course Summary	-	Igneous Petrology is an undergraduate-level course that focuses on the study of the origin, composition, textures, and classification of igneous					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Understand the composition and constitution of magmas, including primary and parental magmas.	U	F	Exam			
CO2	Identify and describe the various forms of intrusive and extrusive igneous rocks.	An	С	Quiz			
CO3	Analyze the textures of igneous rocks and interpret their petrogenetic significance.	An	Р	Assignment			
CO4	Classify igneous rocks based on genetic, chemical, and mineralogical criteria.	С	Р	Viva			
CO5	Explain the processes of crystallization and magmatic differentiation in the formation of igneous rocks.	Ар	Р	Assignment			
CO6	Evaluate the petrographic characteristics and origin of specific igneous rock types.	С	Р	Assignment			
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Detailed Syllabus: IGNEOUS PETROLOGY

Module	Unit	Content	Hrs	Marks			
		Introduction to Igneous Petrolog	14				
	1	2					
	2	Forms of intrusive and extrusive igneous rocks	2				
	3	Structures and textures of igneous rocks	3				
	4	Overview of classification schemes for igneous rocks	1	20			
	5	Genetic and chemical bases of igneous rock classification	1	20			
Ι	6	Classification schemes based on color index, silica saturation, alumina saturation	2				
	7		2				
		Introduction to CIPW classification and Tyrrel's tabular classification	2				
	8	Petrogenesis of igneous rock types based on classification criteria					
	0	Crystallization Processes and Magmatic Differentiation	10				
	9	Crystallization processes in unicomponent and binary magmas - Diopside – Anorthite Eutectic system, Albite – Anorthite Solid- Solution system, Forsterite – Silica incongruent melting system	4				
	10	Bowen's reaction series and its significance	2	15			
П	11	Magmatic differentiation: fractional crystallization, liquid immiscibility, assimilation.	2				
н	12	Reaction principles and their role in igneous petrology. Consanguinity, Variation diagrams and petrographic provinces	2				
		Intrusive & Extrusive Igneous Rocks	11				
	13	Study of intrusive igneous rock types: Granite, Granodiorite, Syenite,					
		Diorite, Gabbro	2				
III	14	Petrographic characteristics and modes of occurrence of each rock type	2	• •			
	15	Interpretation of textures and mineralogy in intrusive igneous rocks	2	20			
	16	Study of extrusive igneous rock types: Basalt, Andesite, Rhyolite	2				
	17	Characteristics of lava flows and pyroclastic deposits	1				
	18	Analysis of extrusive igneous rocks and interpretation of their textures	2				
		Special Igneous Rocks and Petrogenesis	10				
	19	Petrographic characteristics and origin of special igneous rock types: Pegmatites, Lamprophyres, Alkaline rocks, Anorthosites	2				
IV	20	Interpretation of petrogenetic processes based on field observations and laboratory analysis	1	15			
	21	Significance of special igneous rocks in understanding magmatic	2	15			
	22	processes Significance of special igneous rocks in understanding tectonic environments	2				
		30					
V		Practical Identification of hand specimens and thin sections of important igneous rocks.	30	10			

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)						
	Components of Internal Evaluation	4 Theory Modules (10)	Practical (20)			
1	Test paper/ Continuous Evaluation of Practical Exercises	5	10			
2	Seminar/ End Sem Exam &Viva-Voce	3	7			
3	Assignment / Lab Record	2	3			

Mapping of COs to Assessment Rubrics:

	Instructor- Created Exams / Quiz	Assignment	End Semester Examinations
CO 1	\checkmark		✓
CO 2	1		✓
CO 3	1		✓
CO 4		1	
CO 5		1	✓
CO 6		1	\checkmark

- 1. Frost, B.R., Frost, C.D., 2014. Essentials of Igneous and Metamorphic Petrology. Cambridge University Pres. 318 p.
- Raymond, L.A., 2002. Petrology: The Study of Igneous, Sedimentary and MetamorphicRocks, 720p.
- 3. Winter, J.D., 2009. Principles of Igneous and Metamorphic Petrology. Pearson, 720 p.

Programme	B. Sc. Geology					
Course Code	GEL5CJ303					
Course Title	METAMORP	HIC PETRO	LOGY			
Type of Course	Major					
Semester	V					
Academic	300 - 399					
Level						
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours	
		week	per week	per week		
	4	4	-	0	60	
Pre-requisites						
Course	Metamorphic P	etrology is an	undergraduat	te-level course	that focuses on	
Summary	the study of me	the study of metamorphic rocks and the processes involved in their				
	formation.					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understand the definition and variables of metamorphism	U	F	Exam				
CO2	Identify and classify different types of metamorphism based on principal agents, geological settings, and plate tectonic settings.	An	С	Quiz				
CO3	Recognize and interpret metamorphic structures and textures in rocks.	An	Р	Assignment				
CO4	Describe equilibrium mineral assemblages, chemographic diagrams, metamorphic grades, and isograds.	С	Р	Viva-Voce				
CO5	Analyze metamorphic facies, paired metamorphic belts, and their relationship to plate tectonics.	Ар	Р	Assignment				
CO6	Interpret the petrography and origin of metamorphic rock types and understand the processes of prograde and retrograde metamorphism.	С	Р	Assignment				
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Detailed Syllabus: METAMORPHIC PETROLOGY

Module	Unit	Content	Hrs	Marks (70)
		Introduction to Metamorphism	10	
	1	Metamorphism – Definition	2	
		Limits of metamorphism (low and high T/P limits and influence of		
		water and bulk compositions on metamorphic limits).		
	2	Variables of metamorphism – temperature, lithostatic pressure,	2	
		deviatoric stress, fluids.		
Ι	3	Types of metamorphism – classification based on the principal agents -	2	15
-		thermal, dynamic, dynamo-thermal, hydrothermal		
	4	Types of metamorphism – classification based on geological setting –		
		contact, shock, high-strain, regional (burial, ocean-ridge, orogenic.		
	5	Types of metamorphism – classification based on based on plate		
		tectonic setting – metamorphism at convergent, divergent, and		
		transform plate margins.		
	6	Fault-zone and impact metamorphism.	2	
		Classification of Metamorphic Rocks	10	
	7	Classification of metamorphic rocks: foliated and lineated; non-foliated	2	
		and non-lineated; specific rock groups (Quartzite, Greenstone,		
	0	Amphibolite, Serpentinite, Calc-silicate, Skarn).	2	
II	8	Metamorphic structures – fabric, layer, foliation, schistosity, cleavage,	2	15
	9	gneissosity, lineations.	2	
	9	Metamorphic textures – augen, cataclastic, corona, decussate, epitaxial, flaser, granoblastic, lepidoblastic, megacrystic, nematoblastic,		
		poikiloblastic, porphyroblastic, strain shadow, symplectite, and relict		
		textures.		
		Mineral Assemblages and Metamorphic Grade	9	
	10	Equilibrium mineral assemblages; Introduction to chemographic	2	
	10	diagrams: ACF, AKF Diagrams.	_	
	11	Metamorphic grades and isograds; mineral zones and Barrowian	2	
III		sequence.		20
	12	Metamorphic facies – zeolite, prehnite-pumpellyite, greenschist,	1	
		epidote-amphibolite, amphibolite, granulite, blueschist, eclogite, and		
		contact metamorphic facies.		
	13	Facies series and plate tectonics – paired metamorphic belts.	2	
		Petrography and Origin of Metamorphic Rocks	19	
	14	Metamorphic effects on argillaceous (medium P-T Barrovian) rocks.	2	
	15	Metamorphic effects on calcareous (contact metamorphism) rocks.		
	16	Metamorphic effects on basic igneous (regional metamorphism) rocks.		
IV	17	Petrography and origin of Slate, Phyllite, Chlorite schist, Kyanite	1	20
1 V		schist, Biotite schist		20
	18	Petrography and origin of Biotite gneiss, Hornblende gneiss,		
		Amphibolite		
	19	Petrography and origin of Charnockite, Eclogite, and Mylonite.		
	20	Prograde and retrograde metamorphism.	2	

	21	Nature of metamorphic fluids and metasomatism.		
	22	Anatexis and migmatites; metamorphic differentiation.		
		Open Ended Module	12	
V		Identify various metamorphic rocks from different settings in hand	12	10
v		specimens and thin sections, and understand their origin with respect to		10
		the processes.		

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

INTE	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)							
	Components of Internal	4 Theory Modules	Open ended Module					
	Evaluation	(20)	(10)					
1	Test paper/ Mid semester Exam	10	4					
2	Seminar/ Viva/ Quiz/	6	4					
3	Assignment	4	2					

Mapping of COs to Assessment Rubrics:

	Instructor- Created Exams / Quiz	Assignment	Project Evaluation	End Semester Examinations
CO 1	1			✓
CO 2	1			✓
CO 3	1			✓
CO 4		1		
CO 5		1		✓
CO 6		1	1	\checkmark

- 1. Barker, A.J., 1990. Introduction to Metamorphic Textures and Microstructures. Blackie, 162p.
- 2. Bucher, K. and Grapes, R., 2011. *Petrogenesis of Metamorphic Rocks*. Springer-Verlag, Berlin-Heidelberg, 428p.
- 3. Frost, C.D., Frost, B.R, 2013. *Essentials of Igneous and Metamorphic Petrology*, CambridgeUniversity Press, 336p.
- 4. Kornprobst, J., 2012. *Metamorphic Rocks and Their Geodynamic Significance: A Petrological Handbook*, Springer, 206p.
- 5. Kretz, R., 1994. Metamorphic Crystallization. John Wiley & Sons, 507p.
- Miyashiro, A., 1978. Metamorphism and Metamorphic Belts. 3rd Edition. George Allen &Unwin, London, 492p.
- 7. Raymond, L.A., 2002. *Petrology: The Study of Igneous, Sedimentary and MetamorphicRocks*, 720p.
- 8. Spear, F.S. 1995. *Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths*. Monograph, Mineralogical Society of America, 799p.
- Vernon, R.H. and Clarke, G.L., 2008. Principles of Metamorphic Petrology. CambridgeUniversity Press, 446p.
- 10. Winter, J.D., 2011. Principles of Igneous and Metamorphic Petrology, Prentice-Hall, 728p.

Semester VI

Programme	B. Sc. Geology						
Course Code	GEL6CJ304						
Course Title	ECONOMIC GEOI	LOGY					
Type of Course	Major						
Semester	VII						
Academic	300 - 399						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	NIL						
Course	The course provides	The course provides a detailed account of the processes of ore formation					
Summary	and also the various	economic mi	ineral deposi	ts and fossil f	uel reserves		
	available in India.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understand the historical development of economic geology and the geochemical distribution of elements.	U	F	Exam				
CO2	Identify the materials of mineral deposits, including ore and gangue minerals	Ар	С	Quiz / Viva				
CO3	Classify mineral deposits according to Lindgren's and Bateman's classification	Ар	Р	Assignment				
CO4	Analyze the controls of ore localization	Е	М	Viva				
CO5	Evaluate the various processes of ore formation, and their resulting mineral deposits.	Ар	F	Assignment				
CO6	Explain the ore deposits and fossil fuels resources of India with reference to their geologic settings	Е	М	Assignment				
	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)Metacognitive Knowledge (M)							

Detailed Syllabus: ECONOMIC GEOLOGY

Module	Unit	Content	Hrs	Marks
		Introduction to Economic Geology	4	
	1	Historical development of economic Geology. Geochemical		
		distribution of elements.		
_	2	Materials of mineral deposits – ore minerals, gangue minerals, tenor		
Ι		and grade of ores, ore shoots and bonanzas.		
	3	Brief study of metallogenic epochs and provinces – geologic		10
		thermometers.		
	4	Classification of mineral deposits. Outline of Lindgren's and		
		Bateman's classification- Syngenetic and epigenetic deposits.		
	5	Controls of ore localization – structural, stratigraphic, physical and		
		chemical.	4	
II	6	Magmatic Processes of Ore Formation	4	
11	7	Magmatic processes – mode of formation Early magmatic processes and deposits, disseminations, segregations		
	/	and injections		10
	8	Late magmatic processes and deposits – Residual liquid segregation		10
	0	and injection		
	9	Immiscible liquid segregation and injection – sublimation.		
		Metamorphic, Hydrothermal & Sedimentary Processes	22	
	10			
	10	Metamorphic processes – Formation of Graphite, Asbestos,		
	11	Talc, Soapstone and Sillimanite group of minerals		
	11	Contact Metasomatic processes – the process and effects – resulting		
	10	mineral deposits.		30
	12	Hydrothermal processes – principles – Factors affecting deposition –		
		wall rock alteration – minerals sequence – cavity filling deposits		
		Fissure veins, shear – zone, stock-work, saddle reef, ladder vein, fold		
		cracks, breccia filling, solution cavities, pore space and vesicular filling		
III	13	Replacement deposits- process and deposits – criteria of		
	15	replacement.		
	14	Oxidation and supergene sulphide enrichment – solution and		
		deposition in the zone of oxidation – secondary sulphide		
		enrichment – Gossans and capping		
	13	Sedimentary processes and cycles – principles involved in		
		sedimentation – cycles of Iron and manganese		
	14	Weathering processes – principles- Residual concentration process and		
		deposits		
	15	Mechanical concentration principles – eluvial, alluvial, beach and		
		eolian placers.		
		Ore Deposits & Fossil Fuels Resources of India	15	
	16	Occurrence and distribution in India of metalliferous deposits - base		
		metals, iron, manganese, aluminium, chromium		
	17	Occurrence and distribution in India of metalliferous deposits - nickel,		20
		gold, silver, molybdenum.		20
IV	18	Indian deposits of non-metals – Diamond, mica, asbestos, barytes,		
		gypsum, graphite, apatite and beryl.		
	19	Indian deposits of non-metals – Gemstones, refractory minerals,		

		abrasives and minerals used in glass, fertilizer, paint, ceramic and		
		cement industries.		
	20	Coal and its properties: Different varieties and ranks of coal. Origin of		
		coal. Geology and coal petrography of different coalfields of India.		
	21	Origin, migration and entrapment of natural hydrocarbons. Characters		
		of source and reservoir rocks. Structural, stratigraphic and mixed traps.		
	22	Geographical and geological distributions of onshore and		
		offshore petroliferous basins of India.		
		Practical	30	10
V		Identification of economic mineral deposits. Understanding the spatial		
		distribution of Indian mineral deposits using spatial data and software.		

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)								
	Components of Internal Evaluation	4 Theory Modules (10)	Practical (20)						
1	Test paper/ Continuous Evaluation of Practical Exercises	5	10						
2	Seminar/ End Sem Exam &Viva-Voce	3	7						
3	Assignment / Lab Record	2	3						

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

References:

1.Pohl, W.L., 2016. Economic Geology Principles and Practice. Wiley-Blackwell, 678 p.

2. Sarkar, S.C., Gupta, A., 2012. Crustal Evolution and Metallogeny in India.

CambridgeUniversity Press, 912 p

Programme	B. Sc. Geology									
Course Code	GEL6CJ305									
Course Title	STRUCTURAL GEOLOGY & GEOTECTONICS									
Type of Course	Major	Major								
Semester	VII									
Academic	300 - 399	300 - 399								
Level										
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours					
	4	3	-	2	75					
Pre-requisites	Field Geology – I & I	Field Geolog	y –II (Desira	ble)						
Course	The course in stru	The course in structural geology & geotectonics is a theoretical								
Summary	introduction to these	two branches	of geology.							

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	The student will			
	understand the	U	F	Exam
	fundamental structural			
	geology concepts			
CO2	The student will be able to			
	apply the fundamental	Ap	С	Quiz
	field techniques of			
	structural geology			
CO3	The student will be able to			
	discuss rock deformation	An	Р	Assignment
CO4	The student will be able to			
	discuss various structural	E	М	Viva
	features such as folds,			
	faults and joints			
CO5	The student will be able to			
	explain the structure and	Ар	F	Assignment
	characteristic of layers of			
	the Earth			
CO6	The student will be able to			
	describe the concept of	E	Μ	Assignment
	plate tectonics and the			
	features associated with it			
* - Re	emember (R), Understand (U),	, Apply (Ap), Anal	lyse (An), Evaluate (I	E), Create (C)
	ctual Knowledge(F) Conceptu	ual Knowledge (C) Procedural Knowle	dge (P)
Metao	cognitive Knowledge (M)			

Module	Unit	Content	Hrs	Marks					
		Introduction to Structural Geology & Rock Deformation	10						
	1	Introduction to Structural Geology, Diastrophic and non-diastrophic	2						
		structures.							
	2								
Ι	3 Rock deformation - stress and strain, types of stress - type of strain -								
		stress-strain diagram.							
	4	Stages of deformation, mechanism of elastic, plastic, and brittle	2						
		deformation.							
	5	Introduction to equal area and stereographic projections	2						
		Structural elements	15						
	6	Folds: Elements of folded surface	2						
	7	Classification of folds - descriptive study of different types of folds -	2						
	8	Introduction to the mechanics of folding; Buckling, Bending, Flexural	2						
		slip and flow folding							
II	9	Fault: Classification and description of Faults.	3	20					
	10	Joints: Definition, classification, descriptive study, and geological	2						
		significance of joints.							
	11	Lineation, Foliation and their types.	2						
	12	Unconformition Definition types and significance Researching of	2						
	12	Unconformities: Definition, types and significance. Recognition of Unconformities in the field and on maps	Z						
		Layers of Earth	10						
	12	- -	2						
	13	Structure and characteristics of layers of the Earth: Crust	2						
		(Continental and Oceanic), Mantle (Lower and Upper), Core (Inner and Outer);							
III	14	Geophysical and petrochemical characteristics of Lithosphere and	3						
	14	Asthenosphere	5	15					
	15	2							
	10	-							
	16	convection Mantle plumes; Hot spots	2						
	10	Super swells	3						
	17	Plate Tectonics	10						
	18	Continental Drift;	2						
	19	Seafloor spreading; Palaeomagnetism	2						
IV	20	Plate tectonics: Basic concepts and definition. Types of plate margins.	2						
	20	Features associated with divergent, convergent, and transform plate	2	20					
	21	margins.	2						
	22	Triple junctions, Benioff zones, Island arcs, rift valleys, transform	2						
		faults	-						
		Practical	30	10					
		Structural contouring, Thickness and depth problems and 3-point							
		problems of dip and strike. Interpretation of structure, stratigraphy and							
		geologic history from maps. Drawing profile sections and							
		interpretation of geological maps of different complexities. Relation							
		between true dip and apparent dip - width of outcrops; true thickness							
		and vertical thickness and their mutual relation.							

Detailed Syllabus: STRUCTURAL GEOLOGY & GEOTECTONICS

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-						
CO 2	2	3	-	-	-	-						
CO 3	-	-	1	-	-	-						
CO 4	-	-	2	3	-	-						
CO 5	-	1	-	-	-	-						
CO 6	-	-	-	3	-	-						

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)								
	Components of Internal Evaluation	4 Theory Modules (10)	Practical (20)					
1	Test paper/ Continuous Evaluation of Practical Exercises	5	10					
2	Seminar/ End Sem Exam &Viva-Voce	3	7					
3	Assignment / Lab Record	2	3					

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

- Frisch, W., Meschede, M., and Blakey, R., 2011. *Plate Tectonics Continental Drift and Mountain Building*, Springer-Verlag, Berlin Heidelberg, 212p.
- 2. Kondie, K.C., 2011. *Earth as an Evolving Planetary System*, Academic Press, Oxford, UK, 574p.
- 3. Turcotte, D.L. and Schubert, G., 2014. Geodynamics, Cambridge University Press, 636p.
- 4. Twiss, R.J., Moores, E.M., 2007. Structural Geology. W.H. Freeman, 500p.

Programme	B. Sc. Geology				
Course Code	GEL6CJ306				
Course Title	INDIAN GEOLOG	Y			
Type of Course	Major				
Semester	VI				
Academic	300 - 399				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	4	-	0	60
Pre-requisites	NIL				
Course	The course introduc	es the differ	rent stratigra	phic units of	India with
Summary	particular reference	to their for	mation, lithe	ology and oth	her relevant
	details.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Students will demonstrate knowledge of the early Precambrian stratigraphy of India	U	F	Exam
CO2	Students will be able to identify and describe the late Precambrian stratigraphy of India	Ap	С	Quiz
CO3	Students will gain an understanding of the distribution, characteristics, and economic importance of Paleozoic rocks in India,	An	Р	Assignment
CO4	Students will comprehend the depositional environments, distribution, life, classification, and economic significance of Mesozoic formations in India	Е	М	Viva
CO5	Students will gain insight into the geological events that occurred during the Cenozoic era in India	Ар	F	Assignment
CO6	Students will analyze and interpret geological processes and events throughout geological history of the subcontinent.	E	М	Assignment
# - Fa	emember (R), Understand (U), Apply (A actual Knowledge(F) Conceptual Knowl cognitive Knowledge (M)			

Detailed Syllabus: INDIAN GEOLOGY

Module	Unit	Content	Hrs	Marks			
	Preca	mbrian Stratigraphy	12				
	1 Sargur supracrustals. 2 Granulite blocks of southern India						
Ι	3	Dharwar Supergroup.Aravalli Supergroup		20			
	4 Delhi Supergroup, Cudappah Supergroup, Vindhyan Super grou						
	5	Brief study of Singhbhum craton, Sausar and Sakoli group					
	Paleo	zoic Stratigraphy	12				
	6	Cambrian of Salt Range. Age of Saline Series					
	7	Upper Carboniferous and Permian rocks of Salt Range		15			
II	8	Paleozoic rocks of Kashmir Valley		15			
	9	Paleozoic rocks of Spiti Valley					
	10	Paleozoic rocks of Peninsular India					
	Meso	zoic Stratigraphy	12				
	11	The Depositional Environment-distribution-life-classification and					
		economic importance of Gondwana formations of India					
	12	Coastal Gondwana of India, Gondwana formations of Tamil Nadu		20			
	13	Triassic of Spiti – The Lilang System, Jurassic of Kutch		20			
III	14	Cretaceous of Tiruchirapalli – Pondicherry – Bagh Beds					
	15	Deccan traps: distribution, structure, Lameta beds – infratrapean and					
		intertrappean beds, age of the Deccan traps					
	Ceno	ozoic Stratigraphy	12				
	16	Comprehensive account of the geological events took place during					
		Cenozoic Era in India					
	17	Rise of Himalayas, stratigraphy of Siwalik system, fauna and flora of		15			
IV		Siwaliks		15			
	18	Tertiary rocks of Assam, Karewa formation, Tertiary rocks of Tamil					
		Nadu, Tertiary rocks of Kerala					
	19	Pleistocene Glaciation. Cenozoic oil bearing formations of India	ļ				
		Open – Ended Module	12	10			
\mathbf{V}		Discuss the new finding in Indian Geology with reference the research					
4		papers published in this area. Identify the spatial distribution of					
		various geological units with reference to the map of India.					

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

INTEF	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)							
	Components of Internal	4 Theory Modules	Open ended Module					
	Evaluation	(20)	(10)					
1	Test paper/ Mid semester Exam	10	4					
2	Seminar/ Viva/ Quiz	6	4					
3	Assignment	4	2					

Mapping of COs to Assessment Rubrics:

	Assignment	Seminar	End Semester Examinations
CO 1			\checkmark
CO 2	\checkmark		
CO 3	\checkmark		
CO 4		\checkmark	\checkmark
CO 5			
CO 6			\checkmark

- 1. Sharma, R.S., 2009. Cratons and Fold Belts of India. Springer.
- 2. Krishnan M.S. (2003)- Geology of India and Burma, 6th Edition, CBS.
- 3. Wadia D.N. (1953) Geology of India, TATA McGraw Hill.
- Pascoe, E.H.(1968) A manual of the Geology India and Burma, Govt of India Publications.
- Vaidyanathan & Ramakrishnan . (2008) GSI publications, Bangalore. Geology of India Vol 1 &2.

Semester VII

Programme	B. Sc. Geology						
Course Code	GEL7CJ401						
Course Title	HYDROGEOLOGY	ζ					
Type of Course	Major						
Semester	VII						
Academic	400 - 499						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	NIL						
Course	This course introduce	ces students	to the prin	nciples of hy	/drogeology,		
Summary	focusing on the st	tudy of gro	oundwater f	low, aquifer	properties,		
	groundwater exploration, and water quality. Topics include hydrological						
	cycle, aquifer chara	acterization,	groundwate	er flow equa	ations, well		
	hydraulics, saline wat	ter intrusion	and groundw	ater exploration	on.		

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the fundamental concepts of hydrogeology and the hydrological cycle.	U	F	Exam
CO2	Analyse aquifer properties and their significance in groundwater flow.	Ар	С	Quiz
CO3	Apply groundwater flow equations to solve problems related to flow dynamics.	An	Р	Assignment
CO4	Demonstrate proficiency in well hydraulics and aquifer testing techniques.	E	М	Viva
CO5	Explain methods for groundwater exploration and management.	Ар	F	Assignment
CO6	Evaluate the sources and remediation of saline water intrusion into groundwater.	Е	М	Assignment
	emember (R), Understand (U), Apply (A	•	, , ,	· · ·
	ctual Knowledge(F) Conceptual Knowl	ledge (C) Proce	edural Knowledge	e (P)
wieta	cognitive Knowledge (M)			

Detailed Syllabus: HYDROGEOLOGY

Module	Unit	Content	Hrs	Marks			
	1	Origin of water: meteroic, juvenile, magmatic and sea waters.					
	2	Hydrologic cycle: precipitation, runoff, infiltration and					
		evapotranspiration, Hydrographs.					
	3	Subsurface movement and vertical distribution of groundwater.					
Ι		Springs.					
	4	Classification of aquifers. Concepts of drainage basin and	8	15			
		groundwater basin.					
	5	Hydrological properties of rocks.					
	6	Determination of permeability in laboratory and in field.					
	7	Water table fluctuations – causative factors, concept of barometric and					
		tidal efficiencies.					
	8	Theory of groundwater flow. Forces causing ground water					
		movements.					
	9	Darcy's Law and its applications.					
	10		15	20			
II							
		hydrogeologic boundaries.					
	12	Evaluation of aquifer parameters using Thiem, Theis, Jacob and					
		Walton methods.					
	13	Groundwater quality – physical and chemical properties of water.					
	14	Quality criteria for different uses - domestic, irrigation and industrial.					
	15	Graphical presentation of water quality data - Stiff diagram, Pie					
	10	diagram, Piper's trilinear diagram and USSL diagram.					
III							
	18	Ghyben-Herzberg relation. Prevention and control of saline water					
	10	intrusion.					
	19	Radioisotopes in hydrogeological studies.					
	20	Ground water exploration -Geologic and hydrogeologic methods.					
	20	Surface geophysical methods –electrical resistivity method: Wenner	-				
	21	and Schlumberger configurations for vertical electrical sounding.					
	22	Subsurface geophysical methods – well logging for delineation of					
		aquifers.					
	23	Remote sensing for groundwater exploration					
IV	24	Types of wells, drilling methods, construction, design, development		_			
		and maintenance of wells	12	20			
	26	Specific capacity and its determination.					
	27	Groundwater problems related to foundation work, mining, canals and					
	21	tunnels.					
	28	Problems of over exploitation and groundwater mining.					
	29	Groundwater development in urban areas and rain water harvesting,					
	2)	Artificial recharge methods.					
	30	Groundwater provinces of India.					
	30	Practical	30	20			
V		r racucai	30	20			
v		Practical problems related to various aspects of the subject					
	1	radious problems related to various aspects of the subject	1				

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)									
	Components of Internal Evaluation 4 Theory Modules Practical (20) (10)									
1	Test paper/ Continuous Evaluation of Practical Exercises	5	10							
2	Seminar/ End Sem Exam &Viva-Voce	3	7							
3	Assignment / Lab Record	2	3							

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

- 1. Bouwer, H Groundwater Hydrology. 1978
- 2. Davies and De Wiest, Hydrogeology, John Wiley and Sons, 1966
- 3. Dominico, P. A.. Concepts and models in Groundwater Hydrogeology, McGrawHill
- 4. Fletcher, G. Driscoll, Groundwater and wells, Science Publ., Jodhpur, 1986
- 5. Karanth, K. R., Groundwater and wells, Science Publ., Jodhpur, 1986
- Linsley, R. K., Jkohler, M. A., and Paulhus, J. L. H., Applied Hydrology, Tata McGrawHill, 1975
- 7. Raghunath, H. M., Groundwater, Wiley Eastern, 1987
- 8. Todd, D. K., Groundwater Hydrology, John Wiley and Sons, 1980
- 9. Tolman, C. F., Groundwater, McGraw Hill
- 10. Walton, W. C, Groundwater Resource Evaluation, McGraw Hill, 1970
- 11. Freeze and Cherry Groundwater

Programme	B. Sc. Geology						
Course Code	GEL7CJ402						
Course Title	APPLIED GEOMO	RPHOLOG	Y				
Type of Course	Major						
Semester	VII						
Academic	400 - 499						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	NIL						
Course	This course introduces students to the fundamental principles and						
Summary	applications of geon	horphology i	n understand	ling landscape	e evolution,		
	landform processes, a	and environm	ental change	s.			

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Understand the theoretical foundations of geomorphology and its relevance to geological processes.	U	F	Exam			
CO2	Identify and analyze landforms and geomorphic processes using field-based and remote sensing techniques.	Ap	С	Quiz			
CO3	Evaluate the impact of human activities on landscape evolution and geomorphic processes.	An	Р	Assignment			
CO4	Apply geomorphological concepts and methods to solve real-world environmental problems and land management issues.	Е	М	Viva			
CO5	Communicate effectively about geomorphic features, processes, and their significance in both written and oral formats	Ар	F	Assignment			
CO6	Understand the theoretical foundations of geomorphology and its relevance to geological processes.	Е	М	Assignment			
	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) 						
	cognitive Knowledge (M)	wiedge (C) 1100		- (1 <i>)</i>			

Detailed Syllabus: APPLIED GEOMORPHOLOGY

Module	Unit	Content	Hrs	Marks
	Intro	duction to Geomorphology		
	1	Geomorphic principles and processes		
Ι	2	Theory of uniformitarianism.	8	15
	3	Control of geomorphological features by geologic structures,	0	15
		lithology, climate and time		
	4	Geomorphologic cycles. Models of landscape evolution.		
	Fluvi	al & Coastal Geomorphology		
	5	Streams-stream hydraulics		
	6	Drainage basin, Morphometric analysis of drainage basins.		
	7	Fluvial-denudational and erosional landforms		
II	8	Concept of rejuvenation and interruptions in the evolution of land.	12	20
	9	Coastal Geomorphology. Landforms of wave erosion and deposition.	12	20
	10	Beach Profiling		
	11	Desert Geomorphology – Processes of erosion and transport		
	12	Erosional and depositional features – dunes, rock varnish, pediment,		
		inselbergs, wadis.		
	Geon	norphology of Kerala		
	13	Wetlands- Geological significance		
III	14	Wetlands - classification and mode of formation		
	15	Geomorphology of Kerala- classification, relief features, geological	12	15
		Significance,		
	16	Rivers of Kerala		
	17	Geomorphic features of the Indian subcontinent.		
	Appli	ications		
IV	18	Hill slopes- forms in relation to lithology and structural weakness in		
		rocks;		
	19	Control and mass movement, modification by overland flow of hill		
		slopes.	13	20
	20	Slope stability.	15	20
	21	Applied Geomorphology: Application of Geomorphology in Civil		
		Engineering,		
	22	Applied Geomorphology: Application of Geomorphology in		
		Hydrogeology, and Environmental Studies.		
		Practical	30	20
		Interpretation of toposheets and identification of geomorphic features,		
		fluvial and coastal land forms. Calculation of surface area and slope.		
		Study of drainage pattern and morphometric analysis.		

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)								
	Components of Internal Evaluation	4 Theory Modules (10)	Practical (20)						
1	Test paper/ Continuous Evaluation of Practical Exercises	5	10						
2	Seminar/ End Sem Exam &Viva-Voce	3	7						
3	Assignment / Lab Record	2	3						

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	End Semester Examinations
CO 1	\checkmark			√
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

- 1. Ahamed, E., 1972. Coastal Geomorphology of India. Orient Longman, New Delhi.
- 2. Cox. A. Plate tectonics and geomagnetic reversals, Freeman, 1973
- 3. Eicher.L.D., Geologic Time, Prentice Hall, 1968
- 4. Hamilton, E. I., Applied geochronology, Academic Press, 1965
- 5. Holmes, A. Principles of Physical Geology, Ronald, London, 1972
- 6. King, C.A.M. Beaches and Coasts, Arnold, London, 1972
- Leopold, L. Wolmen, C. and Miller J.P. Fluvial processes in Geomorphology, EPH Publishing House, New Delhi, 1976
- Pethick, J., An introduction to coastal geomorphology, Arnold Heinman publishers, (India), New Delhi, 1984
- 9. Schumm, S.A. (Ed), Drainage Basin morphology- In Bench mark papers in Geology
- 10. Shartna, H. S.s Indian geomorphology, Concept Publishing .Co, New Delhi, 1990
- 11. Thornbury, W.D. Principles of Geomorphology, Wiley, 1968
- 12. Windley, B.F., The evolving continents, John Wiley, & Sons
- 13. Savindra Singh, Geomorphology, Pravalika publications, Allahabad

Programme	B. Sc. Geology						
Course Code	GEL7CJ403						
Course Title	ADVANCED PALA	EONTOLO	GY				
Type of Course	Major						
Semester	VII						
Academic	400 - 499						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Knowledge in the fos microfossils and evol	· •	es of fossiliza	ation, uses of f	čossils,		
Course	The course deals wit	The course deals with the preparation, identification and application of					
Summary	microfossils, and the evolution of the vertebrates based on their fossil						
	evidences, focussing	on the evo	olution of S	pices, Mesoz	oic reptiles,		
	Birds, Equus, Elephu	s and Man					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Describe the scope & classification of microfossils, and the techniques involved in the preparation and preservation of microfossils	U	F, P	Class tests/Quiz/ Viva			
CO2	Classify the stromatilites, spores and pollens with their geological significance and applications	R	F	Class tests/Quiz/ Seminars			
CO3	Discuss the application of microfossils in petroleum exploration, and in the determination of Paleoenvironments and Palaeoclimate	An	F, C	Class tests/ Viva/ Assignments			
CO4	Explain the origin of life, trends & concepts of evolution, mass extinction, and the application of stable isotopes of O, C & S in the paleontological studies	U	F, C & P	Class tests/ Assignments/ Seminars			
CO5	Illustrate the evolutional history of Pisces, Mesozoic reptiles, Equus, Elephus and Man	U	F&C	Class tests/ Assignments/ Seminars			
CO6	Prepare the slides of microfossils of Ostracoda, Foraminifera and Bryozoa, to identify them under microscope	Ар	F&P	Lab tests			
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Module Unit Content Marks Hrs Micropalaeontology 14 1 Techniques in collection, separation, preparation and preservation of 3 microfossils 2 Classification, morphology, palaeoecology and stratigraphic 3 importance of Foraminifera, Ostracoda, Bryozoa Classification, morphology, palaeoecology and stratigraphic 3 importance of Radiolaria, Diatoms & Conodonts Ι 20 4 Palynology: Morphology, classifications, geological significance and 3 application of spores and pollens Classification of stromatolites and its stratigraphic importance. 2 5 Application of microfossils in the petroleum exploration 6 Significance of microfossils in the studies of Palaeoecology. 7 3 Palaeoclimate, palaeoenvironments and Palaeotemperature Origin of life, principles of evolution and mass extinction 9 Chemical origin of life, Miller's experiment 2 8 9 Phylogenic tree, trends and mechanism of evolution 2 10 Early & modern theories of organic evolution Π 1 15 11 Application of stable isotope studies of oxygen, carbon and sulphur in 2 paleontology 12 2 Major mass extinction events in earth's history **Evolution of Pisces and Mesozoic reptiles** 14 13 Early fishes: types, morphology – jawless, armoured & lung fishes 2 14 Evolution, taxonomic classification, and chronological distribution of 2 Pisces through earth's history Mesozoic reptiles: dinosaurs – bird & lizard hipped, and Carnivorous 15 ш 3 20 & herbivorous forms Mesozoic reptiles: aquatic & marine reptiles, and flying reptiles 3 16 Evolution of Mesozoic birds: Anchiornis, Archaeopteryx, 17 2 Confuciusornis, Hesperornis & Ichthyornis Cenozoic & modern birds – Paleognaths & Neognaths 2 18 Evolution of Mammals 8 Elephantidae – Stegotetrabelodon, Mammuthus, Loxodonta & Elephas 2 19 Evolution of horses from Hyracotherium to Equus 2 IV 20 15 21 Human evolution from apes to Homo sapience 2 22 Siwalik vertebrates 2 Practical-Micropalaeontology 30 Prepare the slides of microfossils 10 1 V 20 Identification of the microfossils of Ostracoda, Foraminifera and 2 20 Bryozoa under microscope

Detailed Syllabus: ADVANCED PALAEONTOLOGY

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)											
	Components of Internal Evaluation	4 Theory Modules (10)	Practical (20)									
1	Test paper/ Continuous Evaluation of	5	10									
	Practical Exercises											
2	Seminar/ End Sem Exam &Viva-Voce	3	7									
3	Assignment / Lab Record	2	3									

Mapping of COs to Assessment Rubrics:

	Internal Exam Assignment P		Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			\checkmark

- 1. Shrock R.R., Berk Twenhofel W.H. Principles of Invertebrate Palaeontology, McGraw Hill, 1953
- 2. Colebert H. Edwin, Evolution of the vertebrates, John Wiley and Sons, 1961
- 3. Bilal U. Haq, Anne Boersma, Introduction to Marine Micro-Palaeontology, Elsevier, 1998
- 4. Woods Henry, Invertebrate Palaeontology, Cambridge University Press, 1961

Programme	B. Sc. Geology										
Course Code	GEL7CJ404										
Course Title	MARINE GEOLOG	ĞΥ									
Type of Course	Major										
Semester	VII										
Academic	400 - 499										
Level											
Course Details	Credit Lecture Tutorial Practical Total										
		per week	per week	per week	Hours						
	4	4	-	0	75						
Pre-requisites	NIL										
Course	Marine Geology is a	course that	explores the	geological pr	cocesses and						
Summary	marine phenomena s	haping the E	Earth's oceans	s and seabed.	This course						
	introduces students to	o the physica	l, chemical,	geological, an	d biological						
	aspects of marine	environment	ts, including	the study	of seafloor						
	topography, sediment	tation, marin	e life, and co	astal processe	s.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used							
CO1	Understand the geological processes shaping marine environments.	U	F	Exam							
CO2	Describe the physical characteristics of the ocean, including water properties, currents, and waves.	Ар	С	Quiz							
CO3	Analyse the geological features of the seafloor, including continental margins, ocean basins, and mid- ocean ridges.	An	Р	Assignment							
CO4	Explain the principles of marine sedimentation and the formation of sedimentary deposits.	Е	М	Viva							
CO5	Discuss the role of oceans in global climate regulation and the impact of climate change on marine ecosystems.	Ар	F	Assignment							
CO6											
# - Fa	emember (R), Understand (U), Apply (A actual Knowledge(F) Conceptual Knowl cognitive Knowledge (M)										

Module Unit Content Hrs Marks Overview of marine geology 1 2 Geological history of the oceans 5 10 Ι 3 Physical properties of seawater Oceanic circulation and climate patterns 4 5 Characteristics of the ocean floor (continental margins, abyssal plains, seamounts) Π 6 Plate tectonics and marine geology 10 20 7 Mid-ocean ridges, hydrothermal vents, and seafloor spreading 8 Submarine canyons, trenches, and volcanic arcs 9 Types of marine sediments (terrigenous, biogenous, hydrogenous) Ш 10 Processes of sedimentation and diagenesis 8 15 11 Formation of marine sedimentary structures (beds, layers, ripples) 12 Distribution patterns of marine sediments and sedimentary basins Coastal geomorphology and processes (erosion, deposition, coastal 13 landforms) 14 Coastal hazards and management strategies 15 Marine ecosystems and biodiversity 16 Human impacts on coastal environments and marine habitats 17 Ocean-atmosphere interactions and climate regulation IV 18 Oceanic heat transport and global climate patterns 22 25 19 Impacts of climate change on marine environments - sea level rise 20 Impacts of climate change on marine environments- ocean acidification, coral bleaching) 21 Mitigation measures for addressing climate change in marine ecosystems 22 Adaptation strategies for addressing climate change in marine ecosystems Practical 20 30 Study of ocean circulation patterns. Ocean floor topography identification from bathymetric data.

Detailed Syllabus: MARINE GEOLOGY

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)											
	Components of Internal Evaluation4 Theory ModulesPractical (20)											
		(10)										
1	Test paper/ Continuous Evaluation of	5	10									
	Practical Exercises											
2	Seminar/ End Sem Exam &Viva-Voce	3	7									
3	Assignment / Lab Record	2	3									

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

- 1. John, L. Mero, Oceanic Mineral resources
- 2. Ph, H. Kuenen, Marine Geology, John Wiley and Sons.
- 3. Keith S.Stowe, Ocean Science. John Wiley and Sons
- 4. Kenneth, J.P., Marine Geology, Prentice Hall Inc., 1982
- 5. Shepard, F. P., Submarine Geology, Harper and Row Publishers, New York
- 6. Sverdrup, H. V., et al, The Ocean
- 7. Trask, P. D., Recent Marine sediments, Dover publications, 1939
- 8. Weisberg, J., and Parish, R, Introductory Oceanography. .McGraw Hill, 1974
- 9. William, L. Donn, Meteorology
- 10. J. P. Riley R. Chester, Chemical Oceanography, Academic Press
- 11. L. Pickard W. J. Emery, Descriptive Physical Oceanography, Pergamon
- 12. Colin D Woodroffe, Coasts: Form, Process and Evolution, Cambridge.

Programme	B. Sc. Geology										
Course Code	GEL7CJ405										
Course Title	ADVANCED MINH	ADVANCED MINERALOGY & CRYSTALLOGRAPHY									
Type of Course	Major	Major									
Semester	VII	VII									
Academic	400 - 499	400 - 499									
Level											
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week	per week	Hours						
	4	3	-	2	75						
Pre-requisites	NIL										
Course	Advanced topics in N	/lineralogy &	Crystallogra	phy							
Summary											

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used							
CO1	Understand the fundamental concepts of crystallography, including crystal symmetry and translational periodicity.	U	F	Exam							
CO2	Demonstrate proficiency in the derivation and application of crystal classes.	Ар	С	Quiz							
CO3	Utilize various crystal notation systems and compare their advantages and limitations.	An	Р	Assignment							
CO4	Apply X-ray diffraction principles to identify minerals and calculate cell dimensions.	E	М	Viva							
CO5	Analyze the optical properties of minerals under polarized light and determine their optic sign and axial angle.	Ар	F	Assignment							
CO6	angle. angle. CO6 Describe the mineralogical composition of Earth's crust and mantle and understand mineral transformations with depth. M Assignment										
# - Fa	emember (R), Understand (U), Apply (A actual Knowledge(F) Conceptual Knowl cognitive Knowledge (M)										

Detailed Syllabus: ADVANCED MINERALOGY & CRYSTALLOGRAPHY

Module	Unit	Content	Hrs	Marks						
	1	Crystallography-Crystalline state-Repetition theory.								
	2	Translation periodicity of crystals.								
Ι	3	Basic rotational symmetries and possibility of simultaneous rotational	7	15						
_		symmetries in different directions of crystals-		13						
	4	symmetrical plane and symmetrical lattices.								
	5	Derivation of 32 crystal classes								
	6	Crystal notation- Schoenflies notation. Herman Mauguin symbols-								
		comparison between Schoenflies and International notations.								
	7	Calculation of crystal elements to test the knowledge of the application								
		of tangent relation, anharmonic ratios.								
II	8	Napier's theorem and equation of the normal.	15 20							
	9	9 X-ray diffraction method- basic principles. X-ray diffractometer-								
	Powder methods 10 Progg's law and its application									
	10 Bragg's law and its application									
	11	Calculation of cell dimensions-identification of minerals from X-ray								
	diffraction patterns. 12 Stereographic projection of crystals 13 Plane polarized and cross polarized light: Behaviour of isotropic and									
	13	Plane polarized and cross polarized light; Behaviour of isotropic and								
111	1.4	anisotropic minerals in polarized light.								
111	14	14 Double refraction; Refractive index; Birefringence; Interference colours and determination of order.								
	15									
	15	Conoscopic observations of minerals under petrological microscope								
	16	Formation of interference figures; Uniaxial and biaxial interference	15	20						
	17	figures. Determination of the Optic sign of uniaxial and biaxial minerals.								
	17	Optical indicatrices of uniaxial and biaxial minerals.								
	18	Vibration directions and sign of elongation in minerals.								
	20	Extinction and extinction angle. Determination of Optic axial angle								
	20	(2V).								
	21	Earth mineralogy: Average mineralogical composition of crust and								
IV	<i>4</i> 1	mantle.	8	15						
A V	22	Mineral transformations in the mantle with depth.		10						
		Practical								
		Stereographic projection of holohedral classes of all the systems,								
V		pyritohedral, tetrahedral, plagiohcdral classes of Isometric system and								
		Rhombohedral classes of Hexagonal system.								
		Calculations of Axial ratios, Zone symbols, Napier's rule, Laws of								
		anharmonic ratio	20	20						
		Determination of the vibration directions of polariser and analyzer	30	20						
		Extinction and extinction angle determination								
		Optic sign								
		Refractive index by Becke line method								
		Identification of thin sections of important rock forming minerals								
		Recalculation of mineral formula from EPMA analysis – Garnet;								
		Pyroxene; Feldspar; biotite; hornblende								

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation		
-	Nil		
1	Slightly / Low		
2	Moderate / Medium		
3	Substantial / High		

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)					
	Components of Internal Evaluation	4 Theory Modules (10)	Practical (20)			
1	Test paper/ Continuous Evaluation of Practical Exercises	5	10			
2	Seminar/ End Sem Exam &Viva-Voce	3	7			
3	Assignment / Lab Record	2	3			

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	End Semester Examinations
CO 1	,			· · · · · · · · · · · · · · · · · · ·
	√ 			V
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

- Dyar, M.D., Gunter, M.E., 2007. *Mineralogy and Optical Mineralogy*. Min. Soc. America, 705p.
- Demange, M., 2012. Mineralogy for Petrologists: Optics, Chemistry, and Occurrence of Rock Forming Minerals. CRC Press (Taylor & Francis Group), 182 p.
- 3. Nesse, W.D., 2012. *Introduction to Optical Mineralogy*. Oxford University Press; 4 edition, 384p.
- 4. Pichler, H., Riegraf, C.S., 2011. Rock-forming Minerals in Thin Section. Springer, 220 p.
- Deer, W.A., Howie, R.A., Zussman, J., 2013. Introduction to the Rock-forming Minerals. Mineralogical Society of Great Britain & Ireland, 510 p.

Semester VIII

Programme	B. Sc. Geology						
Course Code	GEL8CJ406						
Course Title	GEOINFORMATIC	CS APPLIC	ATIONS				
Type of Course	Major						
Semester	VIII						
Academic	400 - 499						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites							
Course	Geoinformatics App	lications cou	urse offers s	tudents a con	nprehensive		
Summary	understanding of th	he principle	s, technique	es, and app	lications of		
	geoinformatics in geo	ology and all	ied sciences.	By the end of	f the course,		
	students will have ac	equired a str	ong foundati	on in geoinfo	ormatics and		
	developed practical sl	kills that are	highly releva	int in the field	s of geology		
	and allied sciences.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the fundamental concepts and principles of Geoinformatics and its applications in Geology.	U	F	Exam
CO2	Acquire knowledge of spatial data types, Geographic Information Systems (GIS), and Remote Sensing technologies.	Ар	С	Quiz
CO3	Gain practical skills in geospatial data acquisition, processing and integration.	An	Р	Practical assignment
CO4	Develop proficiency in spatial analysis techniques, including interpolation, network analysis, and spatial statistics.	Е	М	Practical assignment
CO5	Apply Geoinformatics tools and techniques in geological mapping, environmental assessment, natural hazard management, and urban planning.	Ар	F	Practical assignment
CO6	Present and communicate Geoinformatics projects effectively through case studies and project presentations.	Е	М	Assignment
# - Fa	emember (R), Understand (U), Apply actual Knowledge(F) Conceptual Kno cognitive Knowledge (M)			

Module	Unit	Content	Hrs	Marks				
	1	Overview of Geoinformatics						
	2Role of Geoinformatics in Geology and Environmental Sciences3Spatial Data Types: Vector and Raster							
Ι								
	4 Geographic Information Systems (GIS): Concepts and Applications							
	5 Remote Sensing Technologies and Applications							
	6	Principles of Geospatial Data Acquisition: GPS, Remote Sensing,						
		Surveying						
II	7	Data Collection Methods: Field Surveys, Aerial Photography, Satellite						
		Imagery	15	20				
	8	Data Preprocessing: Image Enhancement, Georeferencing, Mosaicking						
	9 Data Integration and Fusion Techniques							
	10	Quality Assessment and Validation of Geospatial Data						
	11	Spatial Analysis Techniques: Buffering, Overlay, Spatial Joins						
	12	Interpolation Methods: Inverse Distance Weighting, Kriging						
	13	Network Analysis and Routing	10	15				
III	14	Spatial Statistics: Point Pattern Analysis, Spatial Autocorrelation	10	15				
	15	Geospatial Modeling: Suitability Analysis, Land Use/Land Cover						
		Change Modeling						
	16	Geological Mapping						
	17	Hydrogeological Applications						
	18	Natural Hazard Mapping and Risk Assessment						
IV	19	Urban Planning	10	20				
	20	Land Use Management						
	21	Mineral Exploration						
	22	Climate change analysis						
		Practical	30	20				
V		Hands on practical using GIS & Image processing software to learn						
		and experience various applications						

Detailed Syllabus: GEOINFORMATICS APPLICATIONS

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	_							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)									
	Components of Internal Evaluation	4 Theory Modules (10)	Practical (20)							
1	Test paper/ Continuous Evaluation of Practical Exercises	5	10							
2	Seminar/ End Sem Exam &Viva-Voce	3	7							
3	Assignment / Lab Record	2	3							

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	End Semester Examinations
CO 1	\checkmark			√
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

- 1. Avery, T.E. Interpretation of aerial photographs, Burges Publishing Co 1968
- 2. Estes, J.W. and Leslie W. Senger, Remote Sensing Techniques for Environmental analysis, Hamilton Publishing Co., 1974
- 3. Ravi P Gupta Remote sensing geology, ,2nd edition , Springer, 2003
- 4. Thomas M. Lilesand, and Ralph W. Keiferr. Remote Sensing and Image Interpretation, John Wiley and Sons 1979
- 5. Shiv N Pandey, Principles and Applications of Photogeology, New age International Publishers, 2007
- 6. John R Jesnsen, Remote sensing of the environment, University of Carolina, Pearson Educations
- 7. Avery, T.E. Interpretation of aerial photographs, Burges Publishing Co 1968
- 8. Burrow, P. A. and Mc Donnel, R. A. Principles of Geographic Information Systems, Oxford Publishers, 1998
- 9. Clark, K.C. Getting started with Geographic Information System, Prentice Hall, 1990
- 10. Demer, M.N. Fundamentals of GIS, John Wiley & Sons, 2000.
- 11. Peter A. Burrough and Ruchael, A. McDonnell, Principles of Geographical Information System, Oxford Publishers.

Programme	B. Sc. Geology							
Course Code	GEL8CJ407							
Course Title	ENGINEERING GI	EOLOGY						
Type of Course	Major							
Semester	VIII							
Academic	400 - 499							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	4	-	-	60			
Pre-requisites	NIL							
Course	Engineering Geology	is a branch	of applied se	cience that de	als with the			
Summary	study of geological	principles	and their ap	plication to	engineering			
	practices. This cours	practices. This course aims to provide students with a comprehensive						
	understanding of geol	0 1	sses, materia	ls, and hazard	s relevant to			
	civil engineering proj	ects.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understand the fundamental principles of geological processes and materials relevant to engineering applications.	U	F	Exam				
CO2	Demonstrate proficiency in site investigation techniques, including geological mapping, geophysical exploration, and laboratory testing.	Ap	С	Quiz				
CO3	Evaluate geological hazards such as landslides, earthquakes, and subsidence	An	Р	Assignment				
CO4	Apply geotechnical engineering principles to analyze and design foundations, slopes, and earthworks.	Е	М	Viva				
CO5	Demonstrate critical thinking skills through the analysis of case studies and research papers in engineering geology.	Ap	F	Assignment				
CO6	Communicate effectively, about geological aspects of engineering projects and their implications for design and construction.	E	М	Assignment				
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Module Unit Content Hrs Marks Definition and scope of Engineering Geology 1 I 2 Importance of Engineering Geology in civil engineering projects 8 10 3 Geological time scale and rock cycle Basic concepts of mineralogy and petrology 4 5 Weathering processes and their effects on rocks and soils Π Types and classification of rocks and minerals 6 8 10 7 Soil formation and properties 8 Engineering properties of rocks and soils 9 Methods of geological mapping and surveying 10 Geophysical methods for subsurface exploration 11 Borehole drilling and sampling techniques 16 25 Ш 12 Laboratory testing of rock and soil samples 13 Landslides: causes, types, and mitigation measures 14 Earthquakes: seismic hazards assessment and engineering solutions 15 Subsidence and ground settlement 16 Assessment and management of geological hazards in engineering projects 17 Foundation engineering principles IV Slope stability analysis and design 18 16 25 19 Earthworks and soil compaction techniques 20 Ground improvement methods Analysis of case studies involving geological considerations in 21 engineering projects Analysis of case studies involving landslides, subsidence & soil piping 22 **Open Ended Module** 12 10 Field visits to construction sites and geological hazard-prone areas V Group projects on site investigation and geological hazard assessment Presentation and discussion of research papers on recent developments in engineering geology

Detailed Syllabus: ENGINEERING GEOLOGY

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

INTE	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)								
	Components of Internal 4 Theory Modules Open ended Module								
	Evaluation	(20)	(10)						
1	Test paper/ Mid semester Exam	10	4						
2	Seminar/ Viva/ Quiz	6	4						
3	Assignment	4	2						

Mapping of COs to Assessment Rubrics:

	Assignment	Seminar	End Semester Examinations
CO 1			\checkmark
CO 2	\checkmark		
CO 3	\checkmark		
CO 4		\checkmark	\checkmark
CO 5			
CO 6			\checkmark

- 1. Compton, R. R., Manual of Field Geology, John Wiley
- 2. Reedman, J. K, Techniques in Mineral Exploration, Allied Scientific Publishers
- 3. Arogyaswamy, R. N. F., Courses in Mining Geology, Oxford and IBH Pub. Co.
- 4. Fox, Engineering Geology
- 5. Peters, W. C, Exploration and Mining Geology, John Wiley
- 6. Bell, F.G. Fundamentals of Engineering Geology, Butterworths, 1983
- 7. Krynine and Judd, Principle of Engineering Geology and Geotectonic, McGraw Hill. 1957
- 8. Rose, A. W., Hawkes, H. F., and Webb, J. S., Geochemistry in Mineral Exploration, Academic Press
- 9. Gokhale, K.V.G.K. Principles of Engineering Geology B.S. Publications, 2006.

Programme	B. Sc. Geology									
Course Code	GEL8CJ408									
Course Title	EXPLORATION GEOLOGY									
Type of Course	Major									
Semester	VIII									
Academic	400 - 499									
Level										
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours					
	4	4	-	-	60					
Pre-requisites	NIL									
Course	Exploration Geolog	y is a fo	oundational	course that	introduces					
Summary	undergraduate studen	ts to the prin	nciples, meth	nods, and tech	iniques used					
	in the exploration for	mineral and	l energy reso	ources. Studen	ts will learn					
	about the geological	l processes	governing th	he formation	of mineral					
	deposits, exploration		data interpr	retation, and	the role of					
	geology in resource d	iscovery.								

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the geological processes and controls governing the formation of mineral resources.	U	F	Exam
CO2	Identify different types of mineral deposits and their associated geological characteristics.	Ар	С	Quiz
CO3	Apply geological mapping techniques and exploration methods to assess exploration targets.	An	Р	Assignment
CO4	Interpret geological, geophysical, and geochemical data to delineate prospective areas for exploration.	Е	М	Viva
CO5	Evaluate the economic potential and risk factors associated with exploration projects.	Ар	F	Assignment
CO6	Communicate exploration findings effectively through written reports, presentations, and technical documents.	Е	М	Assignment
# - Fa	emember (R), Understand (U), Apply actual Knowledge(F) Conceptual Kno cognitive Knowledge (M)			

Detailed Syllabus: EXPLORATION GEOLOGY

Module	Unit	Content	Hrs	Marks					
	1	Overview of exploration geology and its significance in resource							
		discovery							
	2	Geological controls on mineral and energy deposits							
Ι	3	Methods of surface and subsurface exploration.	8	15					
		Prospecting for economic minerals.							
	4	Drilling and its types. Different methods of sampling and assaying.							
	5	Methods of ore reserve estimation.							
	9	Geochemical exploration techniques. Mobility of elements,							
		pathfinder elements, threshold values and geochemical anomalies.							
II	10	Mode of occurrence of trace elements. Primary dispersion pattern							
		of deep-seated origin. Diffusion and leakage anomalies.							
	11	Geochemical surveys, principles and methods of sampling. Anomalies	14	15					
		in ground and surface waters and sediments.							
	12	Biochemical anomalies. Geobotanical survey techniques.							
		Geobotanical indicators.							
	13	Geophysical exploration - Principles, scope, chief methods and their							
		application.							
	14	1 1 '							
		methods, resistivity methods. Application in ground water							
		exploration.	14	20					
III	15 Gravity methods - Density and rock types, correlation of gravity data,								
		regional and local anomalies. Sample interpretation, instrument used -							
		gravimeter.							
	16	Magnetic methods - field procedure, magnetometer, interpretation of							
		magnetic data, correlations and applications. Principles of air borne							
	17	survey.							
	17	Seismic method- Seismic waves, travel velocity in various geological							
	10	formations – Principles Field operations.							
	18	Refraction and reflection survey - correction of seismic data - methods							
	10	if interpretation -determination of attitude and depth of formation.							
IV	19	Various types of shooting. Seismic instruments and records.							
11	20	Radiometric methods principles of radioactivity, methods, types of	14	20					
		counters: G.M. counters and Scintilometers. Field methods and							
	21	interpretations. Geophysical well logging Electrical, radiometric, sonic and thermal							
	21	logging of boreholes.							
	22	Introduction to remote sensing technologies (satellite imagery,							
		LiDAR, hyperspectral imaging)							
		Open Ended Module	12	10					
V		Field trips to exploration sites. Case studies of important explorations	14	10					
	I	1	l	ι					

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

INTE	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)											
	Components of Internal4 Theory ModulesOpen ended Module											
	Evaluation	(20)	(10)									
1	Test paper/ Mid semester Exam	10	4									
2	Seminar/ Viva/ Quiz	6	4									
3	Assignment	4	2									

Mapping of COs to Assessment Rubrics:

	Assignment	Seminar	End Semester Examinations
CO 1			\checkmark
CO 2	\checkmark		
CO 3	\checkmark		
CO 4		\checkmark	\checkmark
CO 5			
CO 6			\checkmark

- 1. Compton.R.R., Manual of Field Geology, John Wiley
- 2. Dobrin M.B, Introduction to Geophysical Prospecting, Pergamon Press
- 3. Elements of Prospecting and Exploration, Kalyan Publishers
- 4. Ginzburg, I., Principles of Geochefnical prospecting, Pergamon Press
- 5. Griflithis, D. and Kind, R. F., Applied Geophysics for Geologists and Engineers, Pergamon Press
- 6. Kovalarkim, Biochemical exploration for mineral deposits Co-Xinian Press
- 7. Lahee, F. H., Field Geology, Mc Graw Hill
- 8. Low, G.W., Geological Field Methods, Harper and brothers
- 9. Malyyuga, D.F., Biochemical methods of prospecting, Consultants Bureau, NewYork
- 10. Reedman, J. H., Techniques in Mineral Exploration, Allied Scientific Publishers
- 11. Sinha, R. K., and Sharma, N. L, Mineral Economics, Oxford and I.B.H. Publishers
- 12. Swapan Haldar, Mineral Exploration, Principles and Applications, Elsevier.
- 13. S.M. Gandhi, B.C. Sarkar, Essentials of Mineral Exploration and Evaluation, Elsevier.

Minor Courses – Group 1

Programme	B. Sc. Geology										
Course Code	GEL1MN101										
Course Title	GEOINFORMATIC	GEOINFORMATICS - I									
Type of Course	Minor	Minor									
Semester	Ι										
Academic	100 - 199	100 - 199									
Level											
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week	per week	Hours						
	4	3	-	2	75						
Pre-requisites	NIL										
Course											
Summary	ary										

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used							
CO1	Students will acquire knowledge of the key sciences and technologies involved in geoinformatics	U	F	Exam							
CO2	Students will learn about the origin and development of GIS, its components and its core functions	Ap	С	Quiz							
CO3	Students will understand the advantages and limitations of different GIS platforms	An	Р	Assignment							
CO4	Students will understand the principles and techniques of map-making, and map projection types	Е	М	Viva							
CO5	Students will grasp the fundamental concepts of remote sensing	Ар	F	Assignment							
CO6											
# - Fa	emember (R), Understand (U), Ap actual Knowledge(F) Conceptual I cognitive Knowledge (M)										

Detailed Syllabus: GEOINFORMATICS - I

Module	Unit	Content	Hrs	Marks					
	Intro	duction to GIS							
	1								
	2	Sciences and technologies involved – Remote Sensing, GIS, Cartography,							
		Photogrammetry							
	3	Origin of GIS							
Ι	4	GIS – definition	15	20					
	5								
	6	Functions – data input and output, visualization, editing, analysis, map							
		design							
	7	Desktop GIS, mobile GIS, web GIS							
	8	Limitations of GIS							
	Maps								
	9	Maps – to convey location and extent, characteristics, and spatial							
		relationships							
II	10 Classification of maps – topographic maps, thematic maps, cadastral maps								
	11	Elements of a map							
	12								
	13	Map design							
	Intro								
	14 History of Remote Sensing								
III	15								
		Introduction to aerial photography: overlaps, flight lines, drift, crab, tilt, dead ground							
	16	Geometry of aerial photographs - scale, principal point, perspective							
		centre, fiducial marks, nadir, focal length, airbase, photo base, isocentre,	10	15					
		relief displacement.							
	17	Vertical & oblique aerial photographs							
	18	Visual image interpretation & elements of interpretation - tone, texture,							
		shape, association, pattern, shadow, size							
	19	Stereoscopy - Pocket Stereoscope, Mirror Stereoscope, Parallax Bar							
		ept of Remote Sensing							
	20	Stages in Remote Sensing							
	21	Energy Source – EMR, characteristic of EMR –wave nature and particle							
		nature. EMR spectrum	10	20					
IV	22	Blackbody radiation, Stefan Boltzmann's law, Wein's displacement law	10	20					
	23 Interaction of EMR with atmosphere – reflection, scattering, absorption								
	24	Interaction of EMR with earth's surface features – reflection, transmission	-						
	25	Spectral Reflectance of land cover – Vegetation, Soil, Water							
	Pract								
\mathbf{V}	1	Interpretation of aerial photographs	30	10					
	2	Interpretation of toposheets	50	10					
	3	Downloading of toposheets							

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)							
	Components of Internal Evaluation	4 Theory Modules (10)	Practical (20)					
1	Test paper/ Continuous Evaluation of Practical Exercises	5	10					
2	Seminar/ End Sem Exam &Viva-Voce	3	7					
3	Assignment / Lab Record	2	3					

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

- 1. "Introduction to Geographic Information Systems" by Kang-Tsung Chang (McGraw-Hill Education, 2018)
- 2. "Remote Sensing and Image Interpretation" by Thomas M. Lillesand, Ralph W. Kiefer, and Jonathan W. Chipman., (Wiley, 2015)
- 3. "Geographic Information Systems and Science" by Paul A. Longley, Michael F. Goodchild, David J. Maguire, and David W. Rhind., (Wiley, 2015)

- 4. "Elements of Photogrammetry with Applications in GIS" by Paul R. Wolf, Bon A. Dewitt, and Benjamin E. Wilkinson., (McGraw-Hill Education, 2014)
- 5. "Principles of Geographic Information Systems" by Rolf A. de By and Henk J. Scholten (ITC,2010)
- 6. "The GIS 20: Essential Skills" by Gina Clemmer., (ESRI Press, 2013)

Programme	B. Sc. Geology						
Course Code	GEL2MN101	GEL2MN101					
Course Title	GEOINFORMATI	CS - II					
Type of Course	Minor						
Semester	II						
Academic	100 - 199						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	NIL						
Course	An intermediate level course for learners of geoinformatics						
Summary							

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Students will comprehend the classification of sensors and their parameters.	U	F	Exam			
CO2	Students will learn about different types of multispectral sensors and hyperspectral imaging techniques.	Ap	С	Quiz			
CO3	Students will understand the types of platforms used in geoinformatics	An	Р	Assignment			
CO4	Students will identify various sources of GIS data, different data models in GIS,	Е	М	Viva			
CO5	Students will develop skills in data management and editing within a GIS framework	Ар	F	Assignment			
CO6	Students will gain a comprehensive understanding of GNSS technologies, including GPS and GAGAN.	Е	М	Assignment			
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Detailed Syllabus: GEOINFORMATICS - II

Module	Unit	Content	Hrs	Marks		
	Sensor	rs				
	1	Classification of sensors]			
	2					
	3 Components of sensors					
Ι	5	Multispectral sensors – pushbroom & whiskbroom scanners				
1	6 Hyperspectral imaging7 Atmospheric sensors, SONAR, LiDAR					
	6 Hyperspectral imaging					
	Platfo	rms				
	8	Types of platforms – Groundborne, Airborne (balloons,	1			
		geosynchronous)				
	9	Orbital elements - six elements of Keplerian orbit.	15	20		
II	10	Types of satellite orbits – Sunsynchronous, Geosynchronous	15	20		
11	11	GNSS – GPS, GAGAN				
	12	Types of platforms – Ground-borne, Airborne (balloons,				
		aircrafts, UAV), Spaceborne (sunsynchronous,				
		geosynchronous)				
	Data s	sources and data models of GIS				
	13	13 Sources of GIS data – introduction				
	14	Conventional analogue map sources – Topographical maps,				
		Thematic maps, Geologic maps & Existing digital map sources				
	15	Aerial photographs & satellite imageries	15	20		
III	16	Field data sources – Surveying & GPS	- 15	20		
111	17	Reports & Publications				
	18	Data models in GIS				
	18	Spatial data model – Raster & Vector				
	19	Attribute data model – hierarchical, network, relational				
	Data N	Management and Editing in GIS				
	20	Data base management system				
	21	Data management in GIS	5	15		
IV	22					
23 Data reduc		Data reduction, Generalization, Transformation]			
	24	Rubber Sheeting and edge matching	1			
	Practi	cals	30	10		
V	25	Georeferencing				
	26	Preparation of different thematic layers]			

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation			
-	Nil			
1	Slightly / Low			
2	Moderate / Medium			
3	Substantial / High			

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)							
	Components of Internal Evaluation	4 Theory Modules (10)	Practical (20)					
1	Test paper/ Continuous Evaluation of Practical Exercises	5	10					
2	Seminar/ End Sem Exam &Viva-Voce	3	7					
3	Assignment / Lab Record	2	3					

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

- 1. "Introduction to Remote Sensing" by James B. Campbell and Randolph H. Wynne (Guilford Press, 2011)
- 2. "Remote Sensing and Image Interpretation" by Thomas M. Lillesand, Ralph W. Kiefer, and Jonathan W. Chipman (Wiley, 2015)
- 3. "Fundamentals of Remote Sensing" by George Joseph., (Universities Press, 2005)
- 4. "Remote Sensing Digital Image Analysis" by John A. Richards., (Springer, 2013)
- 5. "Principles of Geographical Information Systems" by Peter A. Burrough and Rachael A. McDonnell., (Oxford University Press,1998)
- 6. "GNSS Applications and Methods" by Scott Gleason and Demoz Gebre-Egziabher., Artech House, 2009)

Programme	B. Sc. Geology						
Course Code	GEL3MN201	GEL3MN201					
Course Title	GEOINFORMATI	CS - III					
Type of Course	Minor						
Semester	III						
Academic	100 - 199						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	NIL						
Course	Advanced course for beginners in Geoinformatics						
Summary							

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Students will demonstrate a thorough understanding of optical remote sensing thermal remote sensing, and microwave remote sensing (U	F	Exam
CO2	Students will gain proficiency in digital image processing techniques, enabling them to extract meaningful information from remote sensing data.	Ap	Р	Practical Assignment
CO3	Students will apply remote sensing techniques to various domains.	Ap	Р	Assignment
CO4	Students will learn about database management systems (DBMS) and data management techniques in GIS.	Е	М	Viva
CO5	Students will explore the diverse applications of gaining practical skills in utilizing GIS	Ap	F	Practical Assignment
CO6	Students will integrate remote sensing and GIS techniques to address real-world challenges and applications.	Е	М	Practical Assignment
# - Fa	emember (R), Understand (U), A actual Knowledge(F) Conceptual cognitive Knowledge (M)			

Detailed Syllabus: GEOINFORMATICS - III

Module	Unit	Content	Hrs	Marks			
	Types	s of Remote Sensing					
	1	Optical remote sensing – panchromatic, multispectral,					
		superspectral & hyperspectral					
	1 2 Thermal remote sensing: principles and applications 3 Microwave remote sensing : Active & Passive						
Ι			15	20			
	4	6		20			
	5 Introduction to digital image processing						
	6						
	7						
	8	Image classification: Supervised & Unsupervised					
	Appli	cations of Remote Sensing					
	9	Landuse land cover mapping					
	10	Agriculture – crop monitoring, crop damage assessment, NDVI					
II	11	Geology – structural mapping, lineament extraction, mineral	10	15			
	exploration		10	15			
	12	Hydrology – water quality monitoring					
		Mapping - planimetry, DEM, Topographic & BTM					
	14						
	Data	Management in GIS					
	15	DBMS & Data management in GIS					
	16	Topology and spatial relationships- adjacency, containment,					
III		connectivity					
	17	Database query	10	20			
	18	Geospatial measurement					
	19	Overlay operations					
	20	Network analysis					
	21	Surface analysis					
	Appli	cations of GIS					
	22	Facilities Management					
	23	Environment and Natural Resources Management	10	15			
IV	24	Street Network	- 10	15			
	25	Planning and Engineering					
	26	Land Information System					
V	Pract	ical	30	10			
	27	Attribute data entry					
	28	Map layout					

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)								
	Components of Internal Evaluation 4 Theory Modules Practical (2 (10)								
1	Test paper/ Continuous Evaluation of	5	10						
	Practical Exercises								
2	Seminar/ End Sem Exam &Viva-Voce	3	7						
3	Assignment / Lab Record	2	3						

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

- 1. "Introduction to Geographic Information Systems" by Kang-Tsung Chang (McGraw-Hill Education, 2018)
- 2. "Remote Sensing and Image Interpretation" by Thomas M. Lillesand, Ralph W. Kiefer, and Jonathan W. Chipman., (Wiley, 2015)
- 3. "Geographic Information Systems and Science" by Paul A. Longley, Michael F. Goodchild, David J. Maguire, and David W. Rhind., (Wiley, 2015)
- 4. "Elements of Photogrammetry with Applications in GIS" by Paul R. Wolf, Bon A. Dewitt, and Benjamin E. Wilkinson., (McGraw-Hill Education, 2014)
- 5. "Principles of Geographic Information Systems" by Rolf A. de By and Henk J. Scholten (ITC,2010)
- 6. "The GIS 20: Essential Skills" by Gina Clemmer., (ESRI Press, 2013)
- 7. "Introduction to Remote Sensing" by James B. Campbell and Randolph H. Wynne (Guilford Press, 2011)
- 8. "Remote Sensing and Image Interpretation" by Thomas M. Lillesand, Ralph W. Kiefer, and Jonathan W. Chipman (Wiley, 2015)
- 9. "Fundamentals of Remote Sensing" by George Joseph., (Universities Press, 2005)
- 10. "Remote Sensing Digital Image Analysis" by John A. Richards., (Springer, 2013)
- "Principles of Geographical Information Systems" by Peter A. Burrough and Rachael A. McDonnell., (Oxford University Press, 1998)
- 12. "GNSS Applications and Methods" by Scott Gleason and Demoz Gebre-Egziabher., Artech House, 2009)

Minor Courses – Group 2

Programme	B. Sc. Geology							
Course Code	GEL1MN102							
Course Title	PHYSICAL GEOL	OGY						
Type of Course	Minor							
Semester	Ι	Ι						
Academic	100 - 199	100 - 199						
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	NIL							
Course	This course serves a	s an introduc	ction to the f	field of geolog	gy, covering			
Summary	fundamental concept	fundamental concepts related to Earth's formation, dimensions, dynamic						
	evolution, geochrono	logy, and ma	jor geologica	al hazards.				
(CO)								

CO	CO Statement	Cognitive	Knowledge	Evaluation
~ ~ 1	~	Level*	Category#	Tools used
CO1	Students will have an understanding of the basic principles and concepts of geology, including the formation of Earth and its dimensions.	U	F	Exam
CO2	Students will be able to explain the theories of Earth's formation and its physical dimensions, including the structure and composition of Earth's interior layers.	Ар	С	Home assignments
CO3	Students will analyze the dynamic processes that have shaped Earth's surface and interior over geological time scales, including plate tectonics, mountain building, erosion, and sedimentation.	An	Р	Seminar presentations
CO4	Students will be able to interpret geochronological data and understand the methods used to determine the ages of rocks	E	М	Home assignments
CO5	Students will identify and describe major geological hazards, including earthquakes, volcanic eruptions, and understand the geological processes that cause them.	Ap	F	Assignment
CO6	Students will evaluate strategies for mitigating the impacts of geological hazards on society and the environment.	E	М	Practical Assignment
* - Re	member (R), Understand (U), Apply (Ap), A	nalyse (An), Ev	valuate (E), Create	(C)
	ctual Knowledge(F) Conceptual Knowledge ((C) Procedural	Knowledge (P) Me	etacognitive
Know	ledge (M)			

Detailed Syllabus: PHYSICAL GEOLOGY

Module	Unit	Content	Hrs	Marks				
Ι		Introduction to Geology	10					
	1	Geology: The Science of Earth	2					
	2	The Development of Geology	3	15				
	3	1 5						
	4	Plate Tectonics and Scientific Inquiry	3					
II		Earth's Formation and Dimensions	15					
	5	Earth's Spheres	3					
	6	Earth System	3					
	7	Evolution of Earth	2	20				
	8	Formation of Earth's layered structure	2					
	9	Earth's Internal Structure	2					
	10	Layers defined by Physical Properties	3					
III		Changing Earth & Geochronology	10	-				
	11	The Rock Cycle	2	-				
	12	The face of Earth. Mountain building. Origin & evolution of ocean	2					
		floor						
	13	Age of the earth	2	15				
	14	Dating methods: Absolute (radiometric) and relative (stratigraphy)	2					
	15	Application of dating methods in constructing the Geological Time	1					
		Scale						
	16	Overview of eras, periods, epochs – major geological events.	1					
IV		Introduction to Major Geological Hazards	10					
	17	Volcanoes & Volcanic Hazards	1					
	18	Nature of Volcanic Eruptions and Products	1	20				
	19	Types of Volcanoes & Volcanic Landforms	2	20				
	20	Earthquakes & Earthquake Hazards	2	-				
	21	Seismology, Seismic Waves, Earthquakes & Plate Boundaries	2					
	22	Earthquake Destruction. Prediction, Forecast and Mitigation	2					
\mathbf{V}		Practical	30					
	1	Lab exercises to apply the concepts of interior of earth, earth's	20					
		magnetism and plate tectonics. Exploring geologic features using		20				
		Google Earth.	_	4				
	2	Introduction to Topographic Maps. Exercises involving contour lines.	4	-				
	3	Application of Gt. Aide (Academy) Freeware	6					

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)								
	Components of Internal Evaluation	4 Theory Modules (10)	Practical (20)						
1	Test paper/ Continuous Evaluation of Practical Exercises	5	10						
2	Seminar/ End Sem Exam &Viva-Voce	3	7						
3	Assignment / Lab Record	2	3						

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	End Semester Examinations
CO 1	1			✓
CO 2	✓			\checkmark
CO 3	✓			✓
CO 4		✓		\checkmark
CO 5		✓		\checkmark
CO 6			<i>✓</i>	

- 1. Condie, K.C., 2015. *Earth as an Evolving Planetary System*, 3rd Edition, Academic Press, USA.
- Hudson, T., 2012. Living with Earth An Introduction to Environmental Geology. PearsonEducation Inc., New Jersey, USA
- 3. Marshak, S., 2001. Earth: Portrait of a Planet. W.W. Norton & Co., Inc., USA
- 4. Wicander, R. and Monroe, J., 2006. *Essentials of Geology*. 4th Edition, Thomson LearningInc., USA.
- **5.** Tarbuck, E.J. and Lutgens, F.K., 2008. Earth: An Introduction to Physical Geology. 9th Edition, Pearson Education, Inc., New Jersey, USA

Programme	B. Sc. Geology						
Course Code	GEL2MN102						
Course Title	GEOMORPHOLOG	GY					
Type of Course	Minor						
Semester	II						
Academic Level	100 - 199						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	0	2	75		
Pre-requisites	NIL						
Course	This course summarises the actions of various geological agents						
Summary	responsible for the formation of landforms. The processes and features						
-	produced thereof is ex	plained in th	is geomorpho	ology course.			

•

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Assess the various exogenous process in molding the earth's surface	Ev	С	Exams/ Quiz		
CO2	Examine the origin, types, and effects of mass wasting	An	С	Assignment/ Exams		
CO3	Distinguish various morphological features resulting from geological actions of running water.	Un	С	Practical Assignment/Exams		
CO4	Describe the basic concepts on the distribution and occurrence of groundwater	An	С	Assignments/ Exams		
CO5	Distinguish various morphological features resulting from geological actions of wind and glacier.	An	С	Practical Assignment /Exams		
CO6Distinguish various morphological features of ocean floor and coastal region resulting from geological processesUnPPractic Assig Internation						
# - Fac	nember (R), Understand (U), Apply (Ap) tual Knowledge(F) Conceptual Knowled ognitive Knowledge (M)					

Detailed Syllabus: GEOMORPHOLOGY

Module	Unit	Content	Hrs	Marks				
		Mass Wasting & Running Water	10					
	1	The Importance of Mass Wasting. Landslides as Geologic Hazards	1					
	2	Mass Wasting in Landform Development	1					
	3	667						
Ι	4	2	25					
	5	1						
	6	Geological work of streams: Erosional and depositional fluvial landforms	2					
	7	Base level, Rejuvenation, Knick Points, River Piracy	1					
		Groundwater	10					
II	8	Underground water: Occurrence.Water table, porosity, permeability	3					
	9	Aquifers: Confined and unconfined, aquicludes, aquitard, and aquifuge.	3	10				
	10	Natural Springs and types	2					
	11	Geological work of groundwater, Karst Topography	2					
		Glacier & Wind	15					
	10	Ice Sheets. Types of glaciers	2					
	11	Formation and movement of glacial ice	2					
III	12	Glacial erosion and features produced by glacial erosion	3	20				
	13	Glacial deposits. Concept of ice ages.	2					
	14	Global distribution of deserts. Formation of deserts.	2					
	15	Geological actions of wind: erosion, transportation & deposition	2					
	16	Processes and features associated with wind action	2					
		Oceans	10					
	17	Oceans and Seas –distribution over earth	1					
IV	18	Waves, tides, currents, CCD, Marine sediments.	2					
	19	Types of continental margins	1	15				
	20	Ocean bottom topography.	2					
	21	Shoreline processes	2					
	22	Shoreline features	2					
		Practical	30					
	1	Stream ordering using toposheets	5					
V	2	Google Earth application in understanding the global distribution of glaciers, deserts and oceans	20	20				
	3	Calculations involving sediment and water movement in streams	5					

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)								
	Components of Internal Evaluation	4 Theory Modules (10)	Practical (20)						
1	Test paper/ Continuous Evaluation of Practical Exercises	5	10						
2	Seminar/ End Sem Exam &Viva-Voce	3	7						
3	Assignment / Lab Record	2	3						

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	End Semester Examinations
CO 1	~			✓
CO 2	✓			✓
CO 3	✓			✓
CO 4		1		✓
CO 5		1		✓
CO 6			1	

- 1. Tarbuck, E.J. and Lutgens, F.K., 2008. Earth: An Introduction to PhysicalGeology. 9th Edition, Pearson Education, Inc., New Jersey, USA.
- 2. Wicander, R. and Monroe, J., 2006. Essentials of Geology. 4th Edition, Thomson Learning Inc., USA.

Programme	B. Sc. Geology							
Course Code	GEL3MN202							
Course Title	HISTORICAL GEO	DLOGY						
Type of Course	Minor							
Semester	III							
Academic	200-299							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	4	-	2	75			
Pre-requisites	Nil							
Course	The course enables	the students	to get an ov	verall view of	f the use of			
Summary	fossils in understandi	ng the geolo	gical history	and thereby to	o utilise that			
	in stratigraphic classi	fication						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	The students will be able to describe fossils and their preservation	R	F	Instructor created exam/ Quiz
CO2	The students will be able to discuss different type of fossils and their uses	U	С	Home assignment
CO3	The students will be able to define various laws of stratigraphy	R	С	Home assignment
CO4	The students will be able to differentiate physical and biological criterias of correlation	An	Р	Instructor created exam/ Group tutorial works
CO5	The students will be able to explain major events of mass extinction	U	F	Seminar presentation
CO6	The students will be able to explain different types of stratigraphic classification	U	С	Instructor created exam
	emember (R), Understand (U), Apply (Ap),			
	cognitive Knowledge(F) Conceptual Knowledg	ge (C) Proced	urai Knowledge	(٢)

Detailed Syllabus: HISTORICAL GEOLOGY

Module	Unit	Content				
		Introduction to Palaeontology and Fossilization	10			
	1	Definition of Palaeontology	1			
	2	Organic world classification: Flora and Faun	2			
	3	Fossils & Fossilisation: Petrifaction, permineralization,	4	15		
Ι		carbonization, recrystallization, silicification, amber		15		
		preservation, mummification.				
	4	Types of fossils: Body fossil, moulds, casts, tracks, trails,	3			
		borings				
	Uses of Fossi	ils and Laws of Stratigraphy	15			
	5	Uses of fossils: Stratigraphic, climatic and palaeogeographic	2			
		indicators				
	6	Fossils as indicators of evolution and migration of life forms	2			
	7	Fossils: indicators of new deposits of coal and petroleum	1			
	8	Laws of Stratigraphy: Concept of uniformitarianism	1	25		
II	9	Law of order of superposition, Law of faunal succession and	2	23		
		Law of original horizontality				
	10	Principle of Lateral Continuity, Principle of Inclusion, Law of	2			
		cross-cutting relationship				
	11	Correlation: Physical criteria of correlation	3			
	12	Biological criteria of correlation and homotaxis	2			
	v	ts of Mass Extinction, Facies Changes, and Stratigraphic	10			
	Classification					
	13	Major events of Mass extinction: Ordovician-Silurian and late	2			
		Devonian extinction events				
	14	Permian- Triassic and Cretaceous- Tertiary extinction events	2			
	15	Facies and facies changes: Litho and bio facies	2			
	16	Break in stratigraphic records: Unconformities and diastems	1	•		
III	17	Stratigraphic classification: Biostratigraphic classification:	3	20		
		Biozones, biohorizon, index fossil. Range zone, taxon range				
		zone, concurrent range zone, interval zone, assemblage zone,				
	10	Acme zone	2			
	18	Lithostratigraphic classification: Group, Formation, Member, Bed	2			
	19		1			
	19	Chronostratigraphic classification: Eonothem, erathem, system, series, stage	1			
		Application of Palaeontology in Earth Sciences	10			
	20	Practical applications of Palaeontology	4			
IV	20	Integration of fossil evidence in understanding Earth's history	3	10		
	21	Contemporary research and advancements in Palaeontology	3			
		Practical	30	10		
		Identify important fossils of stratigraphic significance	50	IV		
		Exercises to familiarise with the laws of stratigraphy	1			
V		Familiarise with World's Palaeontology Institutes / Museums	1			
		Discuss about the books / films that features palaeontology	-			

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Г

External evaluation: 70 marks. Internal Evaluation: 30 marks

INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)					
	Components of Internal Evaluation	4 Theory Modules (20)	Open ended Module (10)		
1	Test paper/ Mid semester Exam	10	4		
2	Seminar/ Viva/ Quiz	6	4		
3	Assignment	4	2		

٦

Mapping of COs to Assessment Rubrics:

	Assignment	Seminar	End Semester Examinations
CO 1			\checkmark
CO 2	1		
CO 3	1		
CO 4		1	1
CO 5			
CO 6			\checkmark

- 1. Boggs, S., 2016. Principles of Sedimentology and Stratigraphy. Pearson Education. 568 p.
- 2. Brookfield, M.E., 2003. Principles of Stratigraphy. Wiley-Blackwell, 340 p.
- 3. Nichols, G., 2016. Sedimentology and Stratigraphy. Wiley-Blackwell, 419 p.
- 4. Henry woods: Invertebrate palaeontolgy Cambridge.
- 5. Romer, A.S.: Vertebrate palaeontology, Chicago press.
- 6. Arnold, C.A., An introduction to Palaeobotany., MC-Graw Hill.
- B.U. Haq and A. Boersma (1978) Introduction to marine Micropalaeontology. Elsevier, Netherlands
- 8. Raup, D.M. and Stanely, M.S.: Principles of Palaeontology, CBS Publishers.
- 9. Moore, R.C., Laliker, C.G.&Fishcher, A.G.: Invertebrate Fossils, Harper brothers
- Shrock. R.R. and Twenhofel , W.H 1953.: Principles of invertebrate Palaeontology, Amold publication.

Foundation Courses Offered by Major

Programme	B. Sc. Geology				
Course Code					
Course Title	EXPLORING THE MOTHER EARTH				
Type of Course	Foundation – Multi Disciplinary Course				
Semester	1				
Academic	100-199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	3	3	-	0	45
Pre-requisites	NIL				
Course	A brief introduction to Earth and the geological processes				
Summary					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Understand the fundamental concepts and principles of geology as a scientific discipline.	U	F	Exam		
CO2	Describe the processes involved in Earth's formation, including differentiation and early geological history.	Ap	С	Quiz		
CO3	Explain the principles and techniques of geochronology used to determine the ages of rocks and geological events.	An	Р	Assignment		
CO4	Interpret the geological time scale and recognize major landforms and geological features.	Е	М	Viva		
CO5	Identify the driving forces behind tectonic activity and plate movements.	Ар	F	Assignment		
CO6	Identify geological hazards associated with plate tectonics	Е	М	Assignment		
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 					

Module	Unit	Content	Hrs	Marks					
		Introduction to Geology							
	1 Overview of Geology as a Science								
	 2 Branches of Geology: Physical Geology vs. Historical Geology 3 Earth's Structure: Core, Mantle, Crust 								
Ι									
	7	Differentiation of Earth's Interior: Core, Mantle, and Crust							
	8 Earth's Spheres: Lithosphere, Hydrosphere, Atmosphere, Biosphere								
	9	Measurement of Earth's Dimensions: Circumference, Diameter, Mass							
		Early Earth Differentiation and Geochronology							
	9	Early Earth Conditions: Hadean, Archean, and Proterozoic Eons							
II									
	12	Geological Time Scale: Eons, Eras, Periods, and Epochs							
		Geological Time Scale and Landforms							
	13	Geological Time Scale: Overview and Major Events							
	14	Relative Dating Methods: Stratigraphy, Superposition, Cross-Cutting							
		Relationships							
III	15	Absolute Dating Methods: Radiometric Dating Techniques	8	10					
	16	Major Landforms and Geological Processes: Mountains, Plateaus,							
		Valleys, Plains							
	17	Geomorphic Agents: Weathering, Erosion, Deposition, Tectonic							
		Activity							
		Tectonics and Plate Movements							
	18	Plate Tectonics Theory: Historical Development and Evidence							
	19	Types of Plate Boundaries: Divergent, Convergent, Transform							
IV	20	Geological Features Associated with Plate Boundaries: Mid-Ocean	10	15					
		Ridges, Subduction Zones, Faults							
	21	Tectonic Forces and Earthquakes							
	22	Volcanic Activity and Geological Hazards							
		Open Ended Module	9	5					
V	Discus	ssing the new trends in exploring the Universe. Eg. James Web Space							
	Telesc	ope. Different Missions to various planetary bodies.							

Detailed Syllabus: EXPLORING THE MOTHER EARTH

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 50 marks. Internal Evaluation: 25 marks

	INTERNAL MARK SPLIT-UP (TOTAL 25 MARKS)							
	Components of Internal	4 Theory Modules	Open ended Module					
	Evaluation	(20)	(5)					
1	Test paper/ Mid semester Exam	10	2.5					
2	Seminar/ Viva/ Quiz	6	1.5					
3	Assignment/ Group Discussion	4	1					

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	\checkmark
CO 3		\checkmark	\checkmark
CO 4		\checkmark	\checkmark
CO 5		\checkmark	\checkmark
CO6		\checkmark	\checkmark

- 1. Condie, K.C., 2015. *Earth as an Evolving Planetary System*, 3rd Edition, Academic Press, USA.
- Hudson, T., 2012. Living with Earth An Introduction to Environmental Geology. PearsonEducation Inc., New Jersey, USA
- 3. Marshak, S., 2001. Earth: Portrait of a Planet. W.W. Norton & Co., Inc., USA
- 4. Wicander, R. and Monroe, J., 2006. *Essentials of Geology*. 4th Edition, Thomson LearningInc., USA.
- **5.** Tarbuck, E.J. and Lutgens, F.K., 2008. Earth: An Introduction to Physical Geology. 9th Edition, Pearson Education, Inc., New Jersey, USA

Programme	B. Sc. Geology					
Course Code						
Course Title	MINERALS, ROCI	KS & FASC	INATING P	LATE TECT	ONICS	
Type of Course	Foundation – Multi I	Disciplinary (Course			
Semester	2					
Academic	100 - 199	100 - 199				
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	3	3	0	-	45	
Pre-requisites	NIL					
Course	Basic introduction to minerals, rocks and plate tectonics					
Summary						

•

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Identify various types of minerals anddiscuss about their properties	R	F	Exams/ Quiz			
CO2	Able to classify minerals based onvarious properties	U	С	Assignment/ Exams			
CO3	Define rock cycle and categorise the rocks into different groups	U	F	Practical Assignment/ Exams			
CO4	Illustrate fascinating facts about plate movements	U	С	Assignments/ Exams			
CO5	Able to understand the consequences of plate movements	U	С	Assignments/ Exams			
CO6	CO6Demonstrate critical thinking and able to identify important minerals and rocksPPractical Assignment/In ernal exams						
# - Factu	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Module	Unit	Content	Hrs	Marks
		Minerals and Their Properties		
	1	Physical properties of minerals		
Ŧ	2	Form,colour,streak	9	10
Ι	3	9	12	
	4			
	5	Magnetic properties		
	Class	ification of Minerals		
	6	Rock forming Minerals		
тт	7	Ore forming Minerals	0	10
II	8	Silicates and Nonsilicates	9	12
	9	Mafic		
	10	Felsic		
		Rocks And Rock Cycle		
	11	Concept of Rock cycle		
III	12	12 Process of Rock formation and transformation		12
111	13	Igneous rocks, types with examples	9	12
	14	Sedimentary rocks with examples		
	15	Metamorphic rocks with examples		
		Plate Tectonics		
	16	Plate Tectonics theory		
	17	Types of Plate boundaries		
IV	18	Consequences of Tectonics	9	14
1 V	19	Volcano, Island Arcs, Ring of fire	,	14
	20	Earthquake, Rift valley		
	21	Mid oceanic ridges, trenches		
	22	Mineral deposits associated with convergent plate margin		
		Open Ended Module		
V	1	Plotting of major volcanoes related to plates	9	5
v	2	Plotting of earthquakes on world map based on intensity		5
	3	Locating of earthquakes epicentre		

Detailed Syllabus: MINERALS, ROCKS & FASCINATING PLATE TECTONICS

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 50 marks. Internal Evaluation: 25 marks

	INTERNAL MARK SPLIT-UP (TOTAL 25 MARKS)						
	Components of Internal	4 Theory Modules	Open ended Module				
	Evaluation	(20)	(5)				
1	Test paper/ Mid semester Exam	10	2.5				
2	Seminar/ Viva/ Quiz	6	1.5				
3	Assignment/ Group Discussion	4	1				

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	End Semester Examinations
CO 1	1	√	✓
CO 2	\checkmark	✓	✓
CO 3		1	\checkmark
CO 4		1	✓
CO 5		✓	✓
CO6		1	✓

- 1. Condie, K.C., 2015. *Earth as an Evolving Planetary System*, 3rd Edition, Academic Press, USA.
- Hudson, T., 2012. Living with Earth An Introduction to Environmental Geology. PearsonEducation Inc., New Jersey, USA
- 3. Marshak, S., 2001. Earth: Portrait of a Planet. W.W. Norton & Co., Inc., USA
- **4.** Wicander, R. and Monroe, J., 2006. *Essentials of Geology*. 4th Edition, Thomson LearningInc., USA.
- **5.** Tarbuck, E.J. and Lutgens, F.K., 2008. Earth: An Introduction to Physical Geology. 9th Edition, Pearson Education, Inc., New Jersey, USA

Programme	B. Sc. Geology								
Course Code	GEL3FV108_								
Course Title	GEOLOGY & SUSTAINABLE DEVELOPMENT GOALS								
Type of Course	Foundation – Value A	Added Course	e						
Semester	III								
Academic	100-199								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	3	3	-	0	45				
Pre-requisites	NIL								
Course	Course in Geology &	sustainable	Developmen	nt Goals provi	des students				
Summary	with a comprehens	with a comprehensive understanding of the intersections between							
	geology and global s	ustainability	initiatives, t	hrough explor	ration of the				
	United Nations Susta	inable Devel	opment Goal	s (SDGs).					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used					
CO1	Understand the interconnectedness between geology and the Sustainable Development Goals (SDGs) and the role of geology in addressing global challenges.	U	F	Exam					
CO2	Analyze the geological drivers and impacts of climate change and evaluate geologically-based solutions for climate action and adaptation (SDG 13).	Ар	С	Quiz					
CO3	Apply geological principles to the management of water resources, including groundwater exploration, and contamination mitigation (SDG 6).	An	Р	Assignment					
CO4	Critically evaluate the environmental and social implications of resource extraction activities and apply principles of responsible resource management (SDG 12).	E	М	Viva					
CO5	Assess the role of geology in biodiversity conservation, habitat preservation, and ecosystem restoration efforts to promote life on land (SDG 15).	Ар	F	Assignment					
CO6	Advocate effectively about the intersections between geology and SDGs	Е	М	Assignment					
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 								

Module	Unit	Content	Hrs	Marks					
		Introduction to Sustainable Development Goals (SDGs)							
	1	Overview of the United Nations Sustainable Development Goals							
Ι	(SDGs) 2 Linkages between geology, Earth sciences, and the SDGs								
	2 Linkages between geology, Earth sciences, and the SDGs								
	3	3 Importance of geology in achieving sustainable development 9							
	4	Interdisciplinary approach to addressing global challenges through the SDGs							
	5	Overview of the United Nations Sustainable Development Goals (SDGs)							
		Geology and Climate Action (SDG 13)							
	6	Understanding climate change and its geological drivers							
II	7	Impacts of climate change on geology, including sea level rise, glacier retreat, and extreme weather events	9	10					
	8	Role of geology in climate mitigation and adaptation strategies		10					
	9	Carbon capture and storage technologies and geological sequestration							
	10	Understanding climate change and its geological drivers							
		Geology and Clean Water & Sanitation (SDG 6)							
III	11	Geology of water resources: aquifers, groundwater recharge, and contamination pathways							
	12	Groundwater exploration and management techniques	•	10					
	13	Geohydrology and its role in providing clean water and sanitation services	9	10					
	14	Geological hazards related to water, such as floods, landslides, and droughts							
	(Geology and Responsible Resource Management (SDG 12 & 15)							
	15	Geological exploration and sustainable extraction of mineral and energy resources							
IV	16	Environmental impacts of resource extraction and land use change							
	17	Geological hazards associated with resource extraction activities	9	20					
	17 Geological hazards associated with resource extraction activities 9 18 Sustainable development of geological resources for economic and social benefit 9								
	19	Geology's role in biodiversity conservation and habitat preservation	1						
	20	Land degradation and desertification: geological causes and solutions							
V		Open Ended Module	9	5					
	Discu	ssion on SDGs with particular reference to India and Kerala							

Detailed Syllabus: GEOLOGY & SUSTAINABLE DEVELOPMENT GOALS

Mapping of COs with PSOs and POs:

P	Triapping of eos with 1905 and 105.												
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 50 marks. Internal Evaluation: 25 marks

	INTERNAL MARK SPLIT-UP (TOTAL 25 MARKS)									
	Components of Internal 4 Theory Modules Open ended Modu									
	Evaluation	(20)	(5)							
1	Test paper/ Mid semester Exam	10	2.5							
2	Seminar/ Viva/ Quiz	6	1.5							
3	Assignment/ Group Discussion	4	1							

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	End Semester Examinations
CO 1		/	/
	\checkmark	✓	V
CO 2	\checkmark	\checkmark	\checkmark
CO 3		\checkmark	\checkmark
CO 4		\checkmark	\checkmark
CO 5		\checkmark	\checkmark
CO6		\checkmark	\checkmark

- "Geology and the Sustainable Development Goals" edited by Graham B. Shimmield and Clive B. Richardson. Publisher: Geological Society of London. Year of Publication: 2018
- "Sustainable Development in Mineral Economies" by Richard Auty. Publisher: Oxford University Press. Year of Publication: 2014
- "Geology and the Environment" by Bernard W. Pipkin, D.D. Trent, and Richard W. Hazlett. Publisher: Cengage Learning. Year of Publication: 2007

Programme	B. Sc. Geology									
Course Code	GEL4FV110									
Course Title	WATER CONSERV	WATER CONSERVATION TECHNIQUES								
Type of Course	Foundation – Value A	Added Course	e							
Semester	VII									
Academic	100-199									
Level										
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours					
	3	3	-	0	45					
Pre-requisites	NIL									
Course	The Water Conservation Techniques course equips students with the									
Summary	knowledge and skills	s necessary	to address th	ne growing cl	nallenges of					
	water scarcity and sus	stainable wat	er manageme	ent.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understand the principles of water conservation	U	F	Exam				
CO2	Identify and evaluate various water conservation technologies and practices for different sectors.	Ар	С	Quiz				
CO3	Apply knowledge of sustainable land use practices and watershed management techniques	An	Р	Assignment				
CO4	Analyze the role of stakeholders in effective water conservation strategies.	Е	М	Viva				
CO5	Critically evaluate case studies and real-world applications of water conservation techniques	Ар	F	Assignment				
CO6	Communicate effectively about water conservation principles and technologies.	Е	М	Assignment				
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Module	Unit	Content	Hrs	Marks			
		Introduction to Water Conservation					
	1	Overview of global water resources and challenges					
Ι	2 Importance of water conservation in sustainable development						
	3 Historical perspectives on water use and conservation						
	4	Principles of water balance and conservation ethics					
		Water Conservation Technologies					
	5	Efficient irrigation techniques (drip irrigation, micro-sprinklers)					
II	6	Rainwater harvesting systems	9	15			
	7	Greywater recycling and reuse					
	8	Green infrastructure for stormwater management					
		Sustainable Land Use Practices					
	9	Watershed management strategies					
III	10	Soil conservation techniques	8	10			
	11	Agroforestry and sustainable agriculture practices					
	12	Urban planning for water-sensitive design					
		Policy and Governance in Water Conservation					
	13	Water conservation policies and regulations at various levels					
	14	Economic incentives and pricing mechanisms for water conservation					
IV	15	Stakeholder engagement and community-based water management					
	16	Integrated water resources management approaches	10	15			
	17	Role of government agencies, NGOs, and private sector in water conservation	10	15			
	18	Case studies of successful water conservation projects and initiatives	-				
	18Case studies of successful water conservation projects and initiatives19Evaluation of water conservation strategies in different geographic and						
		socio-economic contexts					
		Case Studies and Applications	9	5			
V							

Detailed Syllabus: WATER CONSERVATION TECHNIQUES

Mapping of COs with PSOs and POs:

				5 4414 1									
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 50 marks. Internal Evaluation: 25 marks

	INTERNAL MARK SPLIT-UP (TOTAL 25 MARKS)							
	Components of Internal4 Theory ModulesOpen ended Module							
	Evaluation	(20)	(5)					
1	Test paper/ Mid semester Exam	10	2.5					
2	Seminar/ Viva/ Quiz	6	1.5					
3	Assignment/ Group Discussion	4	1					

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	\checkmark
CO 3		\checkmark	\checkmark
CO 4		\checkmark	\checkmark
CO 5		\checkmark	\checkmark
CO6		\checkmark	\checkmark

- 1. "Water Resources Engineering" by Larry W. Mays. Publisher: Wiley. Year: 2010
- "Water Conservation Techniques" by D. K. Mishra. Publisher: IK International Publishing House Pvt Ltd. Year: 2016
- "Handbook of Water and Wastewater Treatment Technologies" by Nicholas P. Cheremisinoff. Publisher: Butterworth-Heinemann. Year: 2002
- "Sustainable Water Management: Principles and Practices" by Chittaranjan Ray. Publisher: Wiley. Year: 2014
- 5. "Water Harvesting for Groundwater Management: Issues, Perspectives, Scope, and Challenges" by R. S. Yadav. Publisher: CRC Press. Year: 2016.

Programme	B. Sc. Geology					
Course Code	GEL5FS112					
Course Title	WATER QUALITY	ASSESSM	ENT			
Type of Course	Foundation - Skill Er	hancement (Course			
Semester	V					
Academic	100 - 199					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
	per week per week Hours					
	3	3	-	0	45	
Pre-requisites	NIL					
Course	The Water Quality	Assessmen	it course p	rovides stude	ents with a	
Summary	comprehensive under	erstanding of	f the princi	ples, method	ologies, and	
	applications of assessing and managing water quality. Through a series					
	of modules, students will explore the physical, chemical, and biological					
	parameters that defin	e water qual	ity, as well a	as the technique	ues and tools	
	used for water sample	e collection,	analysis, and	l interpretation	1.	

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Understand water quality parameters	U	F	Exam		
CO2	Understand biological assessment of water quality	Ap	С	Quiz		
CO3	Applying the sampling techniques	An	Р	Assignment		
CO4	Applying the analytical techniques	Е	М	Viva		
CO5	Evaluate the water quality based on analytical data	Ар	F	Assignment		
CO6	Describe water quality from the analytical data	Е	М	Assignment		
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 					

Detailed Syllabus: WATER QUALITY ASSESSMENT

Module	Unit	Content	Hrs	Marks
		Introduction to Water Quality Assessment		
I	1	Overview of water quality parameters		
	2	Importance of water quality assessment	9	10
	3	Sources of water contamination		
	4	Basic principles of hydrology		
		Physical and Chemical Properties of Water		
	5	Physical properties of water (temperature, color, turbidity)		
II	6	Chemical properties of water (pH, dissolved oxygen, conductivity)	9	15
	7 Major ions and trace elements in water			
	8	Water hardness and alkalinity		
		Biological Assessment of Water Quality		
III	9	Introduction to biological indicators		
	10 Macroinvertebrates as indicators of water quality		9	10
	11	Microorganisms in water quality assessment		
	12	Role of aquatic plants in water quality monitoring		
		Sampling and Analytical Techniques		
	13	Methods for water sample collection		
	14	Laboratory analysis techniques - spectrophotometry		15
IV	15	Laboratory analysis techniques - chromatography	9	
1 V	16	Quality assurance and quality control in water analysis	9	
	17	Field measurements and portable instrumentation		
	18 Case studies of water quality assessment in various environments			
	19	Regulatory frameworks for water quality management]	
V		Open Ended Module	9	5
V	18	Provide the analytical data of water samples and discuss about the quality		

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 50 marks. Internal Evaluation: 25 marks

	INTERNAL MARK SPLIT-UP (TOTAL 25 MARKS)							
	Components of Internal4 Theory ModulesOpen ended Module							
	Evaluation	(20)	(5)					
1	Test paper/ Mid semester Exam	10	2.5					
2	Seminar/ Viva/ Quiz	6	1.5					
3	Assignment/ Group Discussion	4	1					

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	\checkmark
CO 3		\checkmark	\checkmark
CO 4		\checkmark	\checkmark
CO 5		\checkmark	\checkmark
CO6		\checkmark	\checkmark

- 1. Principles of Water Quality Control" by T. H. Y. Tebbutt. Publisher: Butterworth-Heinemann. Year: 2018
- 2. "Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring" edited by Deborah Chapman. Publisher: CRC Press. Year: 1996

Programme	B. Sc. Geology	B. Sc. Geology					
Course Code	GEL6FS113	GEL6FS113					
Course Title	CONTENT WRITE	NG IN GEO	LOGY				
Type of Course	Foundation – Skill En	nhancement (Course				
Semester	III						
Academic	100-199						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	3	3	-	0	45		
Pre-requisites	NIL						
Course	Content Writing in Geology provides students with the essential skills						
Summary	and knowledge to effectively communicate geological concepts,						
	research findings, and	l insights to a	liverse audie	nces.			

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the principles and techniques of effective scientific communication in geology.	U	F	Exam
CO2	Demonstrate proficiency in writing scientific papers, reports, and technical documents following established conventions and formats.	Ар	С	Quiz
CO3	Develop skills in outreach and communication, including writing for different audiences and platforms in geology.	An	Р	Assignment
CO4	Apply techniques for effectively communicating complex geological concepts and findings to diverse stakeholders.	Е	М	Viva
CO5	Critically analyze and evaluate geology-related content in media and journalism.	Ар	F	Assignment
CO6	Communicate geology-related topics confidently through written assignments, presentations, and outreach materials.	Е	М	Assignment
	emember (R), Understand (U), Ap			
	ictual Knowledge(F) Conceptual I	Knowledge (C) I	Procedural Knowled	ge (P)
Metao	cognitive Knowledge (M)			

Module	Unit	Content	Hrs	Marks
		Introduction to Geology Writing		
	1	Overview of geology as a scientific discipline and its importance in		
		society		
Ι	2	Understanding the audience: writing for scientists, policymakers, and	9	15
		the general public		
	3	Principles of effective scientific communication in geology		
	4	Basics of scientific writing: structure, clarity, and precision in writing		
		Scientific Papers and Reports		
	5	Anatomy of a scientific paper: abstract, introduction, methods, results,		
		discussion, and conclusions	•	15
II	6	Writing techniques for each section of a scientific paper	9	15
	7	Guidelines for citing sources and formatting references		
	8	Peer review process and responding to reviewer comments		
		Geology Outreach and Communication		
	9	Importance of outreach and communication in geology		
III	10	Writing for different platforms: blogs, social media, websites, and		
		newsletters	9	15
	11	Strategies for engaging and educating diverse audiences about	,	15
		geological topics	-	
	12	Incorporating visuals (images, diagrams, maps) into geology outreach		
		materials		
		Technical Writing in Geology		
	13	Writing technical reports, proposals, and project summaries	-	
IV	14	Communicating geological findings and interpretations to stakeholders		
	15	Guidelines for writing field notes and logs		
	16	Incorporating data analysis and interpretation into technical writing	9	15
	17	Role of geology in the media landscape		
	18	Writing news articles and features on geological discoveries and		
		events		
	19	Ethical considerations in science journalism		
V		Open Ended Module	9	5
		Discussing the new discoveries and give practical assignments.		

Mapping of COs with PSOs and POs:

	PSO1	PSO2		PSO4		PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 50 marks. Internal Evaluation: 25 marks

	INTERNAL MARK SPLIT-UP (TOTAL 25 MARKS)							
	Components of Internal 4 Theory Modules Open ended Modu							
	Evaluation	(20)	(5)					
1	Test paper/ Mid semester Exam	10	2.5					
2	Seminar/ Viva/ Quiz	6	1.5					
3	Assignment/ Group Discussion	4	1					

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	\checkmark
CO 3		\checkmark	\checkmark
CO 4		\checkmark	\checkmark
CO 5		\checkmark	\checkmark
CO6		\checkmark	\checkmark

- 1. "Writing for Science and Engineering: Papers, Presentations and Reports" by Heather Silyn-Roberts., Publisher: Butterworth-Heinemann. Year of Publication: 2002
- 2. "The Craft of Scientific Writing" by Michael Alley: Springer. 1996
- 3. "Writing Geology" by Stephen J. Reynolds, Julia K. Johnson, and Paul R. Morin.
- 4. W. H. Freeman. 2011
- 5. "Effective Writing in the Geosciences: A Guide to Scientific Communication" by Jonathon M. Winkler. John Wiley & Sons. : 2016
- **6.** "Scientific Writing and Communication: Papers, Proposals, and Presentations" by Angelika H. Hofmann. Oxford University Press.: 2014.

Elective Courses

Programme	B Sc Geology	B Sc Geology					
Course Code	GEL5EJ301	GEL5EJ301					
Course Title	MINE PLANN	NING & RES	OURCE EST	IMATION			
Type of Course	Major - Electiv	e					
Semester	V						
Academic	300 - 399						
Level							
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours		
		week	per week	per week			
	4	4	-	-	60		
Pre-requisites							
Course	Mine Planning	and Resource	Estimation is	an undergradu	ate-level		
Summary	course designed to provide students with an understanding of the						
	principles, methods, and practices involved in planning and estimating						
	resources for m	ining operatio	ns.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Understand the fundamentals of mine planning and resource estimation.	U	F	Instructor- created exams / Quiz			
CO2	Analyze topographical features and drainage patterns relevant to mining operations.	An	С	Map Reading			
CO3	Evaluate geological considerations in mine planning, including overburden and orebody characteristics.	An	Р	Assignment			
CO4	Apply methods for estimating mineral reserves and resources.	С	Р	Problem Solving			
CO5	Assess different mining methods and their suitability for various geological conditions.	Ap	Р	Test paper			
CO6	Develop environmental management and closure plans for mining operations.	С	Р	Assignment			
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Module	Unit	Content	Hrs	Marks						
		Introduction to Mine Planning and Preparation	10							
	1	Overview of mine planning process	2							
Ι	2									
	limestone)									
	3	Importance of mine plans in mining operations	2							
	4	Regulatory requirements and compliance	2							
		Topography, Drainage, and Geology	10 2							
Π	5									
	6	Drainage patterns and their implications for mine design	2							
	7	Geological considerations in mine planning (overburden,	2	15						
	-	orebody/building stone)								
	8	Integration of topography and geology in mine planning	2							
		Reserve Estimation and Mining Methods,	9							
	9	Techniques for reserve estimation (e.g., geological modeling,	2							
III	10	geostatistics)	-	20						
	10	Determination of mineral resources and reserves	2	20						
	11Overview of different mining methods (open-pit, underground, surface)12Selection of mining methods based on geological and economic factors									
	12		2							
		Environmental Management, Closure Planning, Socio-Economic & Environmental Monitoring	19							
	13	Baseline data collection for environmental impact assessment	2							
	13	Preparation of environmental management plans and mine closure								
	14	plans	1							
	15	Action plans for environmental protection and mitigation measures	2							
	16	Safety, security, disaster management, and risk assessment in mining								
	10	operations	2							
IV	17	Baseline data collection for environmental impact assessment	1	20						
	18	Preparation of environmental management plans and mine closure								
		plans	1							
	19	Assessment of socio-economic benefits and impacts of mining	1							
		activities	1							
	20	Monitoring and management of environmental degradation	1							
	21									
	22	Environmental monitoring of air quality, water quality, noise pollution,	2							
		and ground vibrations	Δ							
		Open-ended Module	12							
V		Try to make mine plans from secondary data collected from various		10						
		sources.								

Detailed Syllabus: MINE PLANNING & RESOURCE ESTIMATION

Mapping of COs with PSOs and POs:

	PSO	PSO	PSO	PSO4		~	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	I	2	3		05	6							
CO 1	2	-	-	-	-	1	1	-	-	-	-	1	
CO 2	-	-	2	-	-	2	-	-	2	-	-	-	
CO 3	-	-	1	-	-	2	-	-	-	-	2	-	
CO 4	1	2	-	-	-	3	-	-	-	2	-	3	
CO 5	-	2	-	-	1	3	-	-	-	2	-	3	
CO 6	3	-	-	-	-	3	3	-	-	-	-	3	

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

INTE	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)							
	Components of Internal	4 Theory Modules	Open ended Module					
	Evaluation	(20)	(10)					
1	Test paper/ Mid semester Exam	10	5					
2	Seminar/ Viva/ Quiz/ Data	6	3					
	Collection							
3	Assignment/ Report Writing	4	2					

Mapping of COs to Assessment Rubrics:

	Instructor- Created Exams / Quiz	Assignment	End Semester Examinations
CO 1	\checkmark		\checkmark
CO 2	\checkmark		\checkmark
CO 3	\checkmark		\checkmark
CO 4		\checkmark	
CO 5		\checkmark	\checkmark
CO 6		\checkmark	\checkmark

- 1. "Open Pit Mine Planning and Design" by William Hustrulid and Mark Kuchta (CRC Press, 2013)
- 2. "Introductory Mining Engineering" by Howard L. Hartman and Jan M. Mutmansky (Wiley, 2002)
- 3. "Mine Planning and Equipment Selection" edited by Raj K. Singhal (CRC Press, 2011)
- "Environmental Impacts of Mining Activities: Emphasis on Mitigation and Remedial Measures" by Mritunjoy Sengupta (Springer, 1993)
- 5. "SME Mining Engineering Handbook" edited by Peter Darling (Society for Mining, Metallurgy, and Exploration, 2011)
- 6. "Geological Methods in Mineral Exploration and Mining" by Roger Marjoribanks (Springer, 2010)
- "Environmental Management in the Australian Minerals and Energy Industries: Principles and Practices" edited by David S. Baldwin, Niven Winchester, and Ross W. Dixon., (UNSW Press, 1993)
- 8. "Mining Environmental Handbook: Effects of Mining on the Environment and American Environmental Controls on Mining" by Jerrold J. Marcus., (Imperial College Press, 1997)
- 9. "Geostatistical Ore Reserve Estimation" by M. David., (Elsevier, 1977)
- 10. "Mine Closure and Sustainable Development" edited by Brock A. Lebeck (Springer, 2019)
- "Rock Mechanics for Natural Resources and Infrastructure Development" edited by Sergio A. Buzzi, Eduardo E. Alonso, and Noel A. C. Brady., (CRC Press, 2019)

Programme	B. Sc. Geology							
Course Code	GEL5EJ302							
Course Title	GEOTECHNICAL	ENGINEEF	RING					
Type of Course	Major - Elective							
Semester	V							
Academic	300 - 399							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	4	-	0	60			
Pre-requisites	NIL							
Course	Geotechnical Engine	ering for Ge	ology is a sp	ecialized cour	rse designed			
Summary	to bridge the gap bet	ween geolog	cical principle	es and their ap	pplication in			
	geotechnical engine	geotechnical engineering practices. This course emphasizes the						
	geological aspects	of soil and	d rock beh	avior, site i	nvestigation			
	techniques, and geote	echnical desig	gn considerat	ions.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the relationship between geological processes and geotechnical engineering principles.	U	F	Instructor- created exams / Quiz
CO2	Demonstrate proficiency in geological site investigation techniques and interpretation of geological data.	An	С	Assignment
CO3	Analyse the geotechnical properties of rocks and soils based on geological characteristics.	An	Р	Assignment
CO4	Apply geotechnical design principles in geological settings, considering factors such as slope stability and ground conditions.	С	Р	Problem Solving
CO5	Evaluate geological hazards and their implications for engineering projects, and implement appropriate mitigation measures.	Ар	Р	Test paper
CO6	Communicate effectively about geological aspects of geotechnical engineering projects and propose solutions to geological challenges.	C	Р	Assignment
	emember (R), Understand (U), Apply (A			
	ctual Knowledge(F) Conceptual Knowl cognitive Knowledge (M)	leage (C) Proce	edural Knowledge	e (r)

Module	Unit		Hrs	Marks
	1	Geo-technical engineering as a field science related to construction,	6	10
Ι	2	Scope of geotechnical engineering		
	3	Ground investigations – Introduction		
	4	Types of ground investigation, Geological mapping for ground		
		investigation		
	5	Field investigations - Introduction,	10	20
	6	Excavations and boreholes - Shallow trial pits, Deep trial pits and		
		shafts,		
	7	Headings (adits),		
II	8	Hand auger boring, Light cable percussion drilling,		
	9	Mechanical augers, Wash boring and other methods,		
	10	Backfilling excavations and boreholes.		
	11	Sampling the ground - General principles, Sample quality.		
	6	Disturbed samples from boring tools or from excavating equipments		
	7	Types of samplers - Open-tube samples and samplers,	1	
	8	Stationary piston sampler, Continuous soil sampling, Sand samplers,		
	-	Rotary core samplers,		
	9		-	
		Window sampler, Block samples. Handling and labelling of samples.		
		samples.		
	10	Field and lab tests Field tests – Introduction, tests.	16	20
	10	Tests in boreholes - Standard penetration test (SPT).	10	20
	11	Permeability test and Packer test.		
	12	Pressure meter test. Pumping	-	
	13	Geophysical surveying (Electrical resistivity, Gravity, Magnetic,	-	
III	10	Seismic methods.		
	14	Laboratory tests on samples - Tests on soil -,	-	
	15	Classification tests - Moisture content/ water content determination	-	
	16	Liquid and plastic limits (Atterberg Limits),		
	17	Particle size distribution (grading) by sieving.	1	
	18	Soil strength tests - Triaxial compression test and unconfined	1	
		compression test.		
	19	Compaction-related tests - Dry density (dry unit weight).	1	
	20	Logging - Description of soils and rocks Description of soils - Mass	16	20
IV		characteristics of soils.		
	21	Material characteristics of soils – Colour, Particle shape, grading and		
		composition.		
	22	Description and classification of rocks - General description - Strength		
		of rock material, Structure, Colour, Texture, Grain size, State of		
		weathering		
	23	Total core recovery (TCR), solid core recovery (SCR), Rock Quality		
		Designation (RQD).		
		Open Ended Module	12	10
V		nts may be exposed to a material laboratory and the tests may be		
	exper	ienced.		

Detailed Syllabus: GEOTECHNICAL ENGINEERING

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	-	-	-	-	1	1	-	-	-	-	1	
CO 2	-	-	2	-	-	2	-	-	2	-	-	-	
CO 3	-	_	1	-	-	2	-	-	-	-	2	-	
CO 4	1	2	-	-	-	3	-	-	-	2	-	3	
CO 5	-	2	-	-	1	3	-	-	-	2	-	3	
CO 6	3	-	-	-	-	3	3	-	-	-	-	3	

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)									
	Components of Internal	4 Theory Modules	Open ended Module							
	Evaluation	(20)	(10)							
1	Test paper/ Mid semester Exam	10	5							
2	Seminar/ Viva/ Quiz/ Data	6	3							
	Collection									
3	Assignment/ Report Writing	4	2							

Mapping of COs to Assessment Rubrics:

	Instructor- Created Exams / Quiz	Assignment	End Semester Examinations
CO 1	\checkmark		\checkmark
CO 2	\checkmark		\checkmark
CO 3	\checkmark		\checkmark
CO 4		\checkmark	
CO 5		\checkmark	\checkmark
CO 6		\checkmark	\checkmark

- 1. "Principles of Geotechnical Engineering" by Braja M. Das.
- 2. "Foundation Design: Principles and Practices" by Donald P. Coduto, William A. Kitch, and Man-chu Ronald Yeung.

Programme	B. Sc. Geology							
Course Code	GEL5EJ303							
Course Title	ENVIRONMENTA	L GEOLOC	ĞΥ					
Type of Course	Major - Elective							
Semester	V							
Academic Level	300 - 399							
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours			
	4	4	-		60			
Pre-requisites	NIL							
Course Summary	A basic course in Envi	ronmental G	eology					

.

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used					
CO1	Able to describe the scientific methods as applied in the earth sciences and explain the fundamental concepts	U	F	Exams/ Quiz					
CO2	Identify the role of human to shape our environment	R	С	Assignment/ Exams					
CO3	Describe various geologic hazards and its impact on earth	<u>U</u>	F	Assignment/ Exams					
CO4	Discuss about the types of water pollution and categorize them	U	С	Assignments/ Exams					
CO5	Explain about Air pollution, effects and various strategies to reduce it.	U	С	Seminars/ Exams					
CO6	Discuss about various waste disposal methods and different types of energy resources	U	С	Assignment/ Internal exams					
# - Fac	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)								

Module	Unit	Content	Hrs	Marks					
		Our Place in the Environment							
	1	Geology as a basic environmental science	1						
	2	Fundamental concepts of environmental Geology							
Ι	3								
	4								
	5	5 Population explosion and Urbanisation							
		Man and Geologic Hazards							
	6	Mass wasting and its human impacts							
II	7	Slope stability- Factors Earthquake Hazards and Risks	10	15					
	8								
	9	9 Prediction and control of earthquake							
		Man and Hydrospere							
	10	Surface water pollution and treatment	1						
		11Point source and Non-point source12Ground water pollution and treatment							
III	12								
	13	Sources of Groundwater pollution, salt water intrusion and							
		acid rain							
	14	Marine water pollution							
	1.5	Man and Atmosphere	4						
	15	Air pollution, Sources	4						
	16	Effects of air pollution , Global warming	4						
,	17	Greenhouse gases, Ozone depletion	4						
۱ IV	18	Strategies to reduce global warming	13	20					
IV	19	Waste management, prevention, minimization, reuse and recycling	4						
	20	Waste disposal methods							
	21	Environmental Impacts of mining and Mine site decommissioning							
	22	Global energy scenario and Alternative source of energy							
		Open Ended Module	12	10					
V									

Detailed Syllabus: ENVIRONMENTAL GEOLOGY

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	РО	PO
												6	7
CO 1	2	-	-	-	-	1	1	-	-	-	-	1	
CO 2	-	-	2	-	-	2	-	-	2	-	-	-	
CO 3	-	-	1	-	-	2	-	-	-	-	2	-	
CO 4	1	2	-	-	-	3	-	-	-	2	-	3	
CO 5	-	2	-	-	1	3	-	-	-	2	-	3	
CO 6	3	-	-	-	-	3	3	-	-	-	-	3	

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)							
	Components of Internal	4 Theory Modules	Open ended Module					
	Evaluation	(20)	(10)					
1	Test paper/ Mid semester Exam	10	5					
2	Seminar/ Viva/ Quiz/ Data Collection	6	3					
3	Assignment/ Report Writing	4	2					

Mapping of COs to Assessment Rubrics:

	Instructor- Created Exams / Quiz	Assignment	End Semester Examinations
CO 1	1		 ✓
CO 2	1		 ✓
CO 3	1		 ✓
CO 4		\checkmark	
CO 5		✓	
CO 6		\checkmark	\checkmark

- 1. "Environmental Geology" by Carla W. Montgomery.,(McGraw-Hill Education, 2010)
- 2. "Environmental Geology" by Edward A. Keller., (Pearson, 2011)
- 3. "Principles of Environmental Geochemistry" by G. Nelson Eby (Thomson Brooks/Cole, 2004)
- 4. "Environmental and Engineering Geology" by David K. Todd and Larry W. Mays

(John Wiley & Sons, 2005)

- 5. "Introduction to Environmental Geology" by Edward A. Keller., (Pearson, 2013)
- 6. "Environmental Geology: An Earth System Science Approach" by Dorothy Merritts, Kirsten Menking, and Andrew de Wet (W. H. Freeman, 2014)
- 7. "Environmental Geology Workbook" by Jack W. Travis., (Wiley, 2009)
- 8. "Essentials of Geology" by Stephen Marshak., (W. W. Norton & Company, 2016)
- 9. "Environmental Geology Laboratory Manual" by Tom Freeman (Prentice Hall, 2010)
- 10. "Applied Geomorphology: Theory and Practice" edited by R. J. Allison., (Wiley, 2002)
- 11. "Environmental Hydrogeology" by Philip E. LaMoreaux and Judy T. Tanner., (CRC Press, 2001)

Programme	B. Sc. Geology				
Course Code	GEL6EJ304				
Course Title	NATURAL DISAST	TER MANA	GEMENT		
Type of Course	Major - Elective				
Semester	V				
Academic	300 - 399				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	4	-	0	60
Pre-requisites	NIL				
Course	Natural Disaster M	lanagement	is a multi	disciplinary	course that
Summary	examines the causes				
	with natural disaster	rs. This cou	rse explores	the scientifi	c principles
	underlying natural l	nazards, risk	assessment	methodolog	ies, disaster
	preparedness, respons	se, and recov	ery measures	S.	

CO1 and impacts of natural disasters on human societies and the environment. U F created exan Quiz Apply hazard assessment and risk analysis methodologies to evaluate F Content of the second sec	CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO2analysis methodologies to evaluate vulnerability and resilience toAnCMap Reading	CO1	and impacts of natural disasters on human societies and the	U	F	Instructor- created exams / Quiz
	CO2	analysis methodologies to evaluate vulnerability and resilience to	An	С	Map Reading
CO3Develop disaster preparedness plans and response strategies for different types of natural disasters.AnPAssignment	CO3	and response strategies for different	An	Р	Assignment
CO4 Analyse post-disaster recovery and reconstruction processes and implement sustainable development measures C P Report Write	CO4	reconstruction processes and implement sustainable development	С	Р	Report Writing
CO5Evaluate the effectiveness of disaster management policies and practices in mitigating the impacts of natural disasters.ApPTest paper		management policies and practices in mitigating the impacts of natural	Ар	Р	Test paper
concepts, principles, and strategies.		natural disaster management concepts, principles, and strategies.			Assignment
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)					
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)			leuge (C) Proce	cuural Knowledge	(r)

Module	Unit	Content	Hrs	Marks	
	1	Definition and classification of natural disasters			
	2	Overview of natural hazard types (earthquakes, hurricanes, floods,			
т	wildfires, etc.) 3 Causes and mechanisms of natural disasters		8	10	
Ι					
	 4 Historical and global perspectives on natural disasters 5 Hazard identification and vulnerability assessment 				
	5	Hazard identification and vulnerability assessment			
	6	Risk analysis methodologies (probabilistic, deterministic)	10	15	
II	7	Spatial analysis techniques for mapping hazard zones	10	15	
	8 Socioeconomic factors influencing disaster risk				
	9	Disaster planning and preparedness measures			
	10	Emergency response coordination and management	10	20	
III	11	10	20		
	11Early warning systems for natural hazards12Search and rescue operations and evacuation procedures				
	13	Post-disaster damage assessment and needs analysis			
	14	Rehabilitation and reconstruction strategies		25	
	15	Community-based approaches to recovery			
	16	Long-term resilience building and sustainable development			
IV	17	Analysis of case studies of major natural disasters (e.g., Hurricane			
		Katrina, Turkey earthquake, Kerala floods)			
	18	Field visits to disaster-prone areas and emergency management	20		
		facilities			
	19	Simulation exercises and role-playing scenarios for disaster response			
		and recovery			
	20	Risk assessment			
	21	Disaster preparedness plans		1	
	22 Post-disaster recovery strategies				
\mathbf{V}		Open Ended Module	12	10	
•	Discu	ussion on different natural disasters and its management.			

Detailed Syllabus: NATURAL DISASTER MANAGEMENT

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	-	-	-	-	1	1	-	-	-	-	1	
CO 2	-	-	2	-	-	2	-	-	2	-	-	-	
CO 3	-	-	1	-	-	2	-	-	-	-	2	-	
CO 4	1	2	-	-	-	3	-	-	-	2	-	3	
CO 5	-	2	-	-	1	3	-	-	-	2	-	3	
CO 6	3	-	-	-	-	3	3	-	-	-	-	3	

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

INTER	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)							
	Components of Internal	4 Theory Modules	Open ended Module					
	Evaluation	(20)	(10)					
1	Test paper/ Mid semester Exam	10	5					
2	Seminar/ Viva/ Quiz/ Data	6	3					
	Collection							
3	Assignment/ Report Writing	4	2					

Mapping of COs to Assessment Rubrics:

	Instructor- Created Exams / Quiz	Assignment	End Semester Examinations
CO 1	\checkmark		\checkmark
CO 2	\checkmark		\checkmark
CO 3	\checkmark		\checkmark
CO 4		\checkmark	
CO 5		\checkmark	\checkmark
CO 6		\checkmark	\checkmark

- 1. "Introduction to International Disaster Management" by Damon P. Coppola 2015, Butterworth-Heinemann.
- 2. "Natural Hazards and Disasters" by Donald Hyndman and David Hyndman 2018. Cengage Learning.
- 3. "Disaster Risk Management: A Reader" edited by Deborah S. Rogers 2009. Routledge.
- "Emergency Management: Principles and Practice for Local Government" by Thomas D. Phelan. 2016. International City/County Management Association (ICMA).
- 5. "Natural Disaster Management" by Irmak Renda-Tanali 2014. CRC Press.
- 6. "Handbook of Disaster Research" edited by Havidan Rodriguez, Enrico L. Quarantelli, and Russell R. Dynes. 2007. Springer.

Programme	B. Sc. Geology				
Course Code	GEL6EJ301				
Course Title	SURVEY TECHNI	QUES			
Type of Course	Major - Elective				
Semester	VI				
Academic	300 - 399				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	4	-	0	60
Pre-requisites	NIL				
Course	This course introduc	es students	to various s	urvey techniq	ues used in
Summary	both terrestrial and n	narine enviro	onments. Stu	dents will lear	rn about the
	history of survey tech	nniques, as w	ell as the equ	ipment and m	nethods used
	for topographic and	l bathymetri	c surveys.	The course	covers data
	acquisition, processin	ig, interpretat	tion, and map	preparation.	

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the historical development and evolution of survey techniques.	U	F	Instructor- created exams / Quiz
CO2	Demonstrate proficiency in conducting topographic surveys and creating elevation contours.	An	С	Map Reading
CO3	Demonstrate proficiency in conducting bathymetric surveys and creating bathymetric contours.	An	Р	Assignment
CO4	Identify and operate different types of topographic survey equipment, including Total Station, GPS, DGPS, Drone, and LIDAR.	С	Р	Problem Solving
CO5	Identify and operate different types of bathymetric survey equipment, including Single Beam Echosounder and Multi Beam Echosounder.	Ар	Р	Test paper
CO6	Acquire, process, interpret survey data, and prepare maps using appropriate software.	С	Р	Assignment
# - Fa	emember (R), Understand (U), Apply actual Knowledge(F) Conceptual Knowledge (M)			

Detailed Syllabus: SURVEY TECHNIQUES

Module	Unit	Content	Hrs	Marks
	1	Introduction to Survey Techniques		
Ι	2	History of Survey Techniques		
	3	Introduction to Topographic and Bathymetric Survey	10	15
	4	Creation of Elevation Contours		
	5	Creation of Bathymetric Contours		
	6			
	6 Topographic Survey Equipment 7 Total Station 8 GPS (Global Positioning System) 9 DGPS (Differential Global Positioning System) 10 Drone Surveying 11 LIDAR (Light Detection and Ranging)			
II			12	20
			14	20
	11	LIDAR (Light Detection and Ranging)		
	12	Bathymetric Survey Equipment		
III			10	15
	14	Multi Beam Echosounder		
	15	Data Acquisition and Processing		
	16	Acquiring Survey Data		
	17	Processing Survey Data		
	18	Interpretation of Survey Data	16	20
IV	19	Preparation of Maps	10	20
	20	Integration of survey data with GIS		
	21	Acquiring satellite data for surveying		
	22	Cadastral mapping with mobile applications		
	Open	Ended Module	12	10
V		Survey can be conducted in the compound of the HEI and the data could be used with GIS applications.		

Mapping of COs with PSOs and POs:

	PSO	PSO	PSO	PSO4	PS	PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	1	2	3		05	6							
CO 1	2	-	-	-	-	1	1	-	-	-	-	1	
CO 2	-	-	2	-	-	2	-	-	2	-	-	-	
CO 3	-	-	1	-	-	2	-	-	-	-	2	-	
CO 4	1	2	-	-	-	3	-	-	-	2	-	3	
CO 5	-	2	-	-	1	3	-	-	-	2	-	3	
CO 6	3	-	-	-	-	3	3	-	-	-	-	3	

Correlation Levels:

Level	Correlation		
-	Nil		
1	Slightly / Low		
2	Moderate / Medium		
3	Substantial / High		

Assessment Rubrics:

INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)					
	Components of Internal	4 Theory Modules	Open ended Module		
	Evaluation	(20)	(10)		
1	Test paper/ Mid semester Exam	10	5		
2	Seminar/ Viva/ Quiz/ Data	6	3		
	Collection				

4

2

External evaluation: 70 marks. Internal Evaluation: 30 marks

Mapping of COs to Assessment Rubrics:

Assignment/ Report Writing

	Instructor- Created Exams / Quiz	Assignment	End Semester Examinations
CO 1	\checkmark		\checkmark
CO 2	\checkmark		\checkmark
CO 3	\checkmark		\checkmark
CO 4		\checkmark	
CO 5		\checkmark	\checkmark
CO 6		\checkmark	\checkmark

References:

3

- 1. "Elementary Surveying: An Introduction to Geomatics" by Charles D. Ghilani and Paul R. Wolf, (Pearson, 2017)
- 2. "Surveying: Theory and Practice" by James M. Anderson and Edward M. Mikhail, (McGraw-Hill Education, 2001)
- 3. "Topographic Surveying" by Herbert Michael Wilson, (McGraw-Hill Book Company, 1912 (Classic Reference)
- 4. "Principles of Geographical Information Systems" by Peter A. Burrough and Rachael A. McDonnell.,(Oxford University Press, 1998)
- 5. "Introduction to GPS: The Global Positioning System" by Ahmed El-Rabbany, (Artech House, 2002)
- 6. "Modern Surveying: A Comprehensive Review" by Arthur Bannister, Stanley Raymond, and Raymond Baker., (Pearson, 1998)
- 7. "UAV or Drones for Remote Sensing Applications" edited by Felipe Gonzalez Toro and Antonios Tsourdos.,(MDPI, 2018)
- 8. "LIDAR: Remote Sensing Technology and Applications" edited by Ralph Stockli, (Nova Science Publishers, 2019)
- 9. "Bathymetric Surveying" by William W. Sayre., (U.S. Government Printing Office, 1983)
- 10. "Surveying with Construction Applications" by Barry Kavanagh and Tom Mastin, (Pearson, 2014)

- 11. "Manual of Geospatial Science and Technology" edited by John D. Bossler, (CRC Press, 2010)
- 12. "Hydrographic Surveying" by W. Langeraar, (Elsevier, 1984)

Programme	B. Sc. Geology								
Course Code	GEL6EJ302								
Course Title	OFFSHORE MINE	OFFSHORE MINERAL RESOURCES & MINING							
Type of Course	Major - Elective								
Semester	VI								
Academic	300 - 399								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	4	-	-	60				
Pre-requisites									
Course	This course provides	s an in-depth	n study of o	ffshore minera	al resources				
Summary	and mining techniq								
	processes involved				-				
	exploration methods,	, and the tec	chnological a	advancements	in offshore				
	mining operations.								

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the geological processes responsible for the formation of offshore mineral deposits.	U	F	Instructor- created exams / Quiz
CO2	Identify and assess various offshore mineral resources, including polymetallic nodules, manganese crusts, and hydrothermal vents.	An	С	Map Reading
CO3	Understand the offshore mineral resource potential in a world perspective	An	Р	Assignment
CO4	Understand the offshore mineral resource potential in an Indian perspective	С	Р	Problem Solving
CO5	Evaluate exploration techniques used to locate and characterize offshore mineral deposits.	Ар	Р	Test paper
CO6	Describe the technological advancements in offshore mining equipment and operations.	С	Р	Assignment
	emember (R), Understand (U), Apply			
	ctual Knowledge(F) Conceptual Knowledge	owledge (C) Pro	cedural Knowledg	e (P)
Metac	cognitive Knowledge (M)			

Module	Unit	Content Hrs I						
	1	Introduction to offshore mineral resources						
	2							
	3 Offshore mineral resources maps							
Ι	 4 Formation and occurrences of offshore mineral resources 5 Manganese Nodules 							
	6	Iron Manganese Crust and Nodules						
	7							
	8	Offshore mineral resources in Indian perspective						
	9	Sand						
II	10	Limemud	16	20				
	11	Heavy Mineral Placers (Ilmenite, Rutile, Garnet, Zircon,	10	20				
		Monazite and Sillimanite)						
	12	Iron Manganese crust and nodules						
	13	Shallow water mining methods						
III	14	Dredging: Mechanical and Hydraulic	10	15				
	15	Pumping: Pneumatic and Eddy Pumps						
	16	Deep water mining methods						
	17	Seabed towing mining systems						
	18	Continuous chain bucket mining systems						
IV	19	Shuttle boat mining systems	10	20				
	20	Pipeline lifting mining systems						
	21	Hydraulic suction						
	22	Robotic mining system						
		Open Ended Module	12	10				
V		sposure to any one or two types of actual mining sites can be though						
	Discuss	ion on the impacts of various types of mining may also be conducted	1.					

Detailed Syllabus: OFFSHORE MINERAL RESOURCES & MINING

Mapping of COs with PSOs and POs:

	PSO	PSO	PSO	PSO4	PS	PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	1	2	3		05	6							
CO 1	2	-	-	-	-	1	1	-	-	-	-	1	
CO 2	-	-	2	-	-	2	-	-	2	-	-	-	
CO 3	-	-	1	-	-	2	-	-	-	-	2	-	
CO 4	1	2	-	-	-	3	-	-	-	2	-	3	
CO 5	-	2	-	-	1	3	-	-	-	2	-	3	
CO 6	3	-	-	-	-	3	3	-	-	-	-	3	

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

INTI	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)								
	Components of Internal	4 Theory Modules	Open ended Module						
	Evaluation	(20)	(10)						
1	Test paper/ Mid semester Exam	10	5						
2	Seminar/ Viva/ Quiz/ Data	6	3						
	Collection								
3	Assignment/ Report Writing	4	2						

Mapping of COs to Assessment Rubrics:

	Instructor- Created Exams / Quiz	Assignment	End Semester Examinations
CO 1	\checkmark		\checkmark
CO 2	\checkmark		\checkmark
CO 3	\checkmark		\checkmark
CO 4		\checkmark	
CO 5		\checkmark	\checkmark
CO 6		\checkmark	\checkmark

- 1. "Marine Minerals: Exploring Our New Ocean Frontier" edited by David A. Ross (Springer, 2013)
- 2. "Marine Mineral Resources" by Fillmore C. F. Earney (Taylor & Francis, 2005)
- 3. "Seabed Minerals and Mining" by Rahul Sharma (Springer, 2017)
- "Marine Geology and Geotechnology of the South China Sea and Taiwan Strait" edited by Ronald C. Chaney, Zhen Shao, and Brian M. Page (Springer, 2018)
- "Seafloor Geomorphology as Benthic Habitat: GeoHAB Atlas of Seafloor Geomorphic Features and Benthic Habitats" edited by Peter T. Harris and Elaine K. Baker (Elsevier, 2012)

- 6. "Marine Mineral Resources of India" by A.K. Ghosh (Daya Publishing House, 2014)
- 7. "Dredging Engineering" by John B. Herbich (McGraw-Hill, 2000)
- 8. "Marine Mining: Technologies and Applications" by Yongxian Song (CRC Press, 2020)
- "Seafloor Mineral Resources: Scientific Advances and Economic Perspectives" edited by Jens Greinert and Jens Bischof (Wiley, 2015)
- 10. "Marine Mining: ROV Technologies and Applications" by Carl F. Hostetter (Woodhead Publishing, 2012)

Programme	B. Sc. Geology								
Course Code	GEL6EJ303								
Course Title	ENVIRONMENTA	ENVIRONMENTAL IMPACT ASSESSMENT							
Type of Course	Major - Elective								
Semester	VI								
Academic	300 - 399								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	4	-	0	60				
Pre-requisites	NIL								
Course	Environmental Impa	ict Assessm	ent (EIA) i	is a crucial	process in				
Summary	environmental manag	environmental management and sustainable development. This course							
	introduces students	to the princ	iples, metho	dologies, and	d regulatory				
	frameworks of EIA.								

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the principles, methodologies, and regulatory frameworks of Environmental Impact Assessment.	U	F	Instructor- created exams / Quiz
CO2	Acquire skills in conducting EIA studies, including screening, scoping, impact assessment, and mitigation planning.	An	С	Test paper
CO3	Apply EIA tools and techniques to identify, predict, and evaluate environmental impacts of development projects.	An	Р	Assignment
CO4	Analyse and interpret EIA reports and make recommendations for environmental management and decision-making.	С	Р	Assignment
CO5	Evaluate the role of stakeholders and public participation in the EIA process.	Ар	Р	Test paper
CO6	Communicate effectively about EIA concepts, methodologies, and findings through written reports, presentations, and discussions.	С	Р	Assignment
# - Fa	emember (R), Understand (U), Apply (A actual Knowledge(F) Conceptual Knowle cognitive Knowledge (M)			

Module	Unit	Content	Hrs	Marks
	1	Definition and objectives of Environmental Impact Assessment		
Ι	2	10	15	
	3	Regulatory frameworks and legal requirements for EIA	10	15
	4			
	5	Steps involved in the EIA process (screening, scoping, baseline		
II		studies, impact assessment, mitigation)		
	6	Methods for identifying and evaluating environmental impacts	15	20
	7	Techniques for predicting and assessing environmental risks		
	8	Guidelines and best practices for conducting EIA studies		
	9	Use of Geographic Information Systems (GIS) in EIA		
III	10	Environmental modeling and simulation techniques	8	10
	11	0	10	
	12	Cost-benefit analysis and economic valuation in EIA		
	13	Overview of national and international EIA regulations		
IV	14	Environmental policy frameworks and their relationship to EIA		
	15	Role of EIA in sustainable development and environmental		
		management		
	16	Emerging trends and challenges in EIA practice		
	17	Analysis of real-world EIA reports and case studies		
	18	Field visits to project sites undergoing EIA processes	15	25
	19	Group exercises on scoping, impact assessment, and mitigation		
		planning		
	20	Role-playing scenarios to simulate stakeholder consultations and		
		decision-making in EIA		
	21			
	22			
V		Open Ended Module	12	10
		Discuss an EIA of any major project that is available in the public		
		domain.		

Detailed Syllabus: ENVIRONMENTAL IMPACT ASSESSMENT

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)							
	Components of Internal	4 Theory Modules	Open ended Module					
	Evaluation	(20)	(10)					
1	Test paper/ Mid semester Exam	10	5					
2	Seminar/ Viva/ Quiz/ Data	6	3					
	Collection							
3	Assignment/ Report Writing	4	2					

Mapping of COs to Assessment Rubrics:

	Instructor- Created Exams / Quiz	Assignment	End Semester Examinations
CO 1	\checkmark		\checkmark
CO 2	\checkmark		\checkmark
CO 3	\checkmark		\checkmark
CO 4		\checkmark	
CO 5		\checkmark	\checkmark
CO 6		\checkmark	\checkmark

- 1. "Environmental Impact Assessment: Theory and Practice" by Peter Wathern 2013. Routledge
- 2. "Environmental Impact Assessment: A Practical Guide" by Barbara J. Bramble and Robert B. Taylor. 2016. Wiley
- 3. "Introduction to Environmental Impact Assessment" by John Glasson, Riki Therivel, and Andrew Chadwick. 2012. Routledge
- 4. "Environmental Impact Assessment: Process, Practice, and Prospects in Australia" by Neil Kirby. 2014. Cambridge University Press
- 5. "Principles of Environmental Impact Assessment" by Lawrence Canter. 2005. CRC Press
- 6. "Environmental Impact Assessment: Cutting Edge for the 21st Century" edited by Matthew W. Cashmore. 2012. Wiley-Blackwell

Programme	B. Sc. Geology					
Course Code	GEL6EJ304					
Course Title	GEOLOGY & CLIMAT	TE CHANGE				
Type of Course	Major – Elective					
Semester	VI					
Academic	300 - 399					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	4	-	0	60	
Pre-requisites						
Course	The Geology & C	limate Chan	ige course	examines the	geological	
Summary	evidence and proces	evidence and processes underlying past, present, and future climate				
	change. It explores the role of geological factors in shaping Earth's					
	climate system and h	low changes	in climate h	ave influenced	d geological	
	processes throughout	Earth's histo	ry.			

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understand the geological evidence and processes associated with past and present climate change.	U	F	Instructor- created exams / Quiz				
CO2	Analyze geological records to reconstruct past climate variations and understand their implications for Earth's climate system.	An	С	Assignment				
CO3	Evaluate the role of geological factors in influencing climate feedbacks and stability.	An	Р	Assignment				
CO4	Assess the impact of human activities on the climate system and geological processes.	С	Р	Problem Solving				
CO5	Identify climate change-related geological hazards and apply risk management strategies.	Ар	Р	Test paper				
CO6		С	Р	Assignment				
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Detailed Syllabus: GEOLOGY & CLIMATE CHANGE

Module	Unit	Content	Hrs	Marks						
	1	Definition and significance of climate change								
Ι	2		10							
	3	The role of geology in understanding past climate change	6	10						
	4	Geological processes influencing climate variability								
	5	Proxy records of past climate change (ice cores, sediment cores, tree								
II		rings)								
	6	Geological indicators of ancient climates (paleosols, fossil	10	20						
		distributions, glacial deposits)	12	20						
	7	Case studies of major climate events in Earth's history								
	8	Case studies of major climate events in Earth's history								
	9	Feedback mechanisms in the climate system (carbon cycle, albedo								
III	II feedback, ocean circulation)									
	10	Impact of geological processes on climate stability (volcanism,								
	tectonics, erosion)									
	11	-								
		 Climate-induced changes in Earth's surface (sea level rise, landscape evolution) Role of geology in regulating long-term climate trends 								
	12	Role of geology in regulating long-term climate trends								
	13	Climate change impacts on geological hazards (landslides, floods,								
		coastal erosion)								
	14	Interaction between climate change and geological hazards								
	15	Vulnerability assessment and risk management strategies for climate-								
		related hazards								
	16	Case studies of climate-induced geological disasters								
IV	17	Anthropogenic influences on the climate system (greenhouse gas								
		emissions, land use change)	15	20						
	18	Impact of human activities on geological processes and landscapes								
	19	Evidence of recent climate change and its attribution to human								
		activities								
	20	Mitigation and adaptation strategies for addressing human-induced								
		climate change								
	21	Case studies from the world	7							
	22	Case studies from India	1							
V		Open Ended Module	12	10						
	24	Climate change in the geological past. Human impact on the								
		environment. Discussions may be								

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)							
	Components of Internal Evaluation	4 Theory Modules (20)	Open ended Module (10)					
1	Test paper/ Mid semester Exam	10	5					
2	Seminar/ Viva/ Quiz/ Data	6	3					
	Collection							
3	Assignment/ Report Writing	4	2					

Mapping of COs to Assessment Rubrics:

	Instructor- Created Exams / Quiz	Assignment	End Semester Examinations
CO 1	\checkmark		\checkmark
CO 2	\checkmark		\checkmark
CO 3	\checkmark		\checkmark
CO 4		\checkmark	
CO 5		\checkmark	\checkmark
CO 6		\checkmark	\checkmark

- "The Earth System" by Lee R. Kump, James F. Kasting, and Robert G. Crane. 2019. Pearson
- "Principles of Paleoclimatology" by Thomas M. Cronin. 2015. Columbia University Press
- "Climate Change: A Very Short Introduction" by Mark Maslin. 2014. Oxford University Press
- "Introduction to Modern Climate Change" by Andrew Dessler and Edward Parson.
 2016. Cambridge University Press
- 5. "The Warming Papers: The Scientific Foundation for the Climate Change Forecast" edited by David Archer and Raymond Pierrehumbert. 2011. Wiley-Blackwell
- 6. "Geological Methods for Archaeology" by Norman Herz, Ervan G. Garrison, and Theodore E. Bunch.2018. Oxford University Press.

Programme	B. Sc. Geology				
Course Code	GEL8EJ401				
Course Title	CLIMATOLOGY				
Type of Course	Major - Elective				
Semester	VIII				
Academic	400 - 499				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	4	-	0	60
Pre-requisites	NIL				
Course	Give a brief account	of the globa	l climate and	l the processe	s associated
Summary	with it.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Examine general circulation and processes of atmosphere over the globe and key elements of global climate models	An	С	Test Paper			
CO2	Analyze global balance of energy and transfer of radiation in the atmosphere	An	С	Assignment			
CO3	Compare various process and forms of precipitation and cyclones	An	С	Test Paper			
CO4	Conclude the basic concept of latitude, longitude and motions of Earth	Ev	С	Assignment			
CO5	Examine the air masses and its classification	An	С	Test Paper			
CO6	Discuss the general climate of India	Un	Р	Assignment			
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Detailed Syllabus: CLIMATOLOGY

Module	Unit	Content	Hrs	Marks	
Ι	Clima	ate Systems	10		
	1	Latitudes & Longitudes - Standard Time, Motions of the earth: Rotation and Revolution,	2		
	2	Milankovitch Cycle	2		
	3	Atmosphere: Role, Structure & Composition Temperature Distribution on Earth	2	15	
	4	Insolation & Heat Budget,	2		
	5	Geographical distribution of the climatic types – Koppen's and Thornthwaite's classification of climate, Global warming	2		
II		Wind System	15		
	6	Lapse rate – Atmospheric stability	2		
	7	Latent Heat of Condensation	2		
	8	3			
	9	Atmospheric Pressure Belts and Wind Systems, Factors Affecting Wind movement, Coriolis Force,	2	20	
	10 Types of Winds: Permanent, Secondary & Local Winds				
	11	2 2			
	12	Temperature Inversion: Types & Effects on Weather, Geostrophic Wind, Jet Streams & Rossby Waves, Major Jet Steams: Subtropical Jet Stream & Polar Jet Stream	2		
III		Clouds	10		
	13	Air Mass - Air masses based on Source Regions, Fronts,	2		
	14	Types of Fronts: Stationary Front, Warm Front, Cold Front & Occluded Front	3	15	
	15	Humidity: Relative Humidity & Dew point, Condensation Forms of Condensation: Dew, Fog, Frost, Mist	2		
	16	Types of Clouds	3		
IV		Cyclones	13		
	17	Smog: Photochemical smog & Sulphurous smog	2		
	18	Precipitation: Types of Precipitation, Types of Rainfall	2		
	19	Thunderstorm, Thunder & Lightning, Tornado, Tropical Cyclones: Favourable Conditions for Formation, Stages of Formation & Structure,	2	20	
	20	Storm Surge, Naming of Cyclones,	2		
	20	Cyclones in Arabian Sea, Bay of Bengal, Temperate Cyclones (Mid Latitude Cyclone or Extra tropical cyclones or Frontal Cyclones)	3		
	22	Droughts	2		
V		Open Ended Module	12	10	
•		General Weather system in India		10	
		Climate Change			

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)							
	Components of Internal Evaluation	4 Theory Modules (20)	Open ended Module (10)					
1	Test paper/ Mid semester Exam	10	5					
2	Seminar/ Viva/ Quiz/ Data Collection	6	3					
3	Assignment/ Report Writing	4	2					

Mapping of COs to Assessment Rubrics:

	Instructor- Created Exams / Quiz	Assignment	End Semester Examinations
CO 1	\checkmark		\checkmark
CO 2	\checkmark		\checkmark
CO 3	\checkmark		\checkmark
CO 4		\checkmark	
CO 5		\checkmark	\checkmark
CO 6		\checkmark	\checkmark

- 1. "Essentials of Meteorology: An Invitation to the Atmosphere" by C. Donald Ahrens. (Cengage Learning, 2016)
- 2. "Climatology" by Robert V. Rohli and Anthony J. Vega (Jones & Bartlett Learning, 2017)
- 3. "The Atmosphere: An Introduction to Meteorology" by Frederick K. Lutgens and Edward J. Tarbuck. (Pearson, 2018)
- 4. "Fundamentals of Weather and Climate" by Robin McIlveen (Oxford University Press, 2010)
- 5. "Climate and the Oceans" by Geoffrey K. Vallis (Princeton University Press,2012)
- "Meteorology Today: An Introduction to Weather, Climate, and the Environment" by C. Donald Ahrens and Robert Henson. (Cengage Learning, 2018)
- 7. "Climate Change: A Very Short Introduction" by Mark Maslin (Oxford University Press, 2021)
- 8. "Atmospheric Science: An Introductory Survey" by John M. Wallace and Peter V. Hobbs., (Academic Press, 2006)

Programme	B. Sc. Geology							
Course Code	GEL8EJ402	GEL8EJ402						
Course Title	ENVIRONMENTA	L INFORM	ATICS					
Type of Course	Major - Elective							
Semester	8							
Academic	400 - 499							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	4	-	0	60			
Pre-requisites	NIL							
Course	Big data related to environment need to be analysed in order to							
Summary	understand the environment. This course offers a guideline for that							
	purpose.							

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Students will be able to collect, store, manage, and analyze environmental data using various informatics tools and databases.	An	С	Test Paper
CO2	Students will demonstrate proficiency in using Geographic Information Systems (GIS) and remote sensing technologies to visualize, analyze, and interpret spatial data related to environmental issues.	An	С	Assignment
CO3	Students will be capable of developing and applying computational models to simulate environmental processes.	An	С	Test Paper
CO4	Students will use statistical and computational methods to analyze environmental data,	Ev	С	Assignment
CO5	Students will integrate knowledge from various disciplines such as ecology, hydrology, geology, and	An	С	Test Paper

	computer science to address complex environmental problems using informatics solutions.						
CO6	Students will be able to effectively communicate the results of their analyses and models to diverse audiences.	Un	Р	Assignment			
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Detailed Syllabus: ENVIRONMENTAL INFORMATICS

Module	Unit	Content	Hrs	Marks				
		Introduction to Environmental Informatics						
	1	Overview of Environmental Informatics						
Ι	2	Role of Informatics in Geology and Environmental Science	10	15				
	3	Data Sources and Collection Methods						
	4							
		Geospatial Analysis and Modeling						
	5	Fundamentals of Geospatial Analysis						
II	6	Spatial Data Processing and Analysis	14	20				
	7	Spatial Interpolation Techniques	14	20				
	8	· ~ F						
	8 Occustatistics and Spatial Analysis 9 Introduction to Spatial Modeling							
	-	Environmental Data Management and Visualization						
	10	Principles of Environmental Data Management	10					
	11	Database Design and Implementation						
III	12							
	13	Geographic Data Visualization						
	14	Time Series Visualization						
	15	15 Multivariate Data Visualization						
	En	vironmental Informatics Applications and Case Studies						
	16	Environmental Monitoring and Assessment						
	17	Environmental Impact Assessment						
	18	Environmental Risk Analysis	14	20				
IV	19	Decision Support Systems in Environmental Management	14	20				
	20	Reports of the Intergovernmental Panel for Climate Change						
	21	Open access data sources related to environment						
	22							
		Open Ended Module	12	10				
.		The students may be encouraged to access data freely						
V		available and discuss the same.						

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)							
	Components of Internal	Open ended Module						
	Evaluation	(20)	(10)					
1	Test paper/ Mid semester Exam	10	5					
2	Seminar/ Viva/ Quiz/ Data	6	3					
	Collection							
3	Assignment/ Report Writing	4	2					

Mapping of COs to Assessment Rubrics:

	Instructor- Created Exams / Quiz	Assignment	End Semester Examinations
CO 1	\checkmark		\checkmark
CO 2	\checkmark		\checkmark
CO 3	\checkmark		\checkmark
CO 4		\checkmark	
CO 5		\checkmark	\checkmark
CO 6		\checkmark	\checkmark

- 1. Methodology and Applications of Environmental Information Processing" by Vladimir Funtikov (Springer, 2013).
- 2. "Geographic Information Systems and Science" by Paul A. Longley et al. (Wiley, 2015).
- 3. "GIS and Geocomputation for Water Resource Science and Engineering" by Barnali Dixon and Venkatesh Uddameri (Wiley, 2016).
- 4. "Data Visualization: Principles and Practice" by Alexandru C. Telea (AK Peters/CRC Press, 2014).
- 5. "Visualizing Environmental Science" by Linda R. Berg and David M. Hassenzahl (Wiley, 2015).
- 6. "Environmental Modeling: Using MATLAB" by Ekkehard Holzbecher (Springer, 2007).
- 7. "Environmental Modelling: Finding Simplicity in Complexity" by John Wainwright and Mark Mulligan (Wiley, 2013).

Programme	B. Sc. Geology									
Course Code	GEL8EJ403									
Course Title	REMOTE SENSIN	REMOTE SENSING FOR GEOLOGY								
Type of Course	Major - Elective									
Semester	8									
Academic	400 - 499									
Level										
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours					
	4	4	-	0	60					
Pre-requisites	NIL									
Course	Remote Sensing for	r Geology i	is a speciali	ized course	designed to					
Summary	introduce undergraduate students to the principles, methods, and									
	applications of remot	e sensing in	geological stu	udies.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the principles of remote sensing and its application in geological studies.	An	C	Test Paper
CO2	Identify geological features and structures using remote sensing imagery.	An	Р	Assignment
CO3	Analyze spectral signatures and image processing techniques for geological interpretation.	An	С	Test Paper
CO4	Interpret geological processes and landforms from satellite and aerial imagery.	Ev	Р	Assignment
CO5	Apply remote sensing data for geological mapping and resource exploration.	An	С	Assignment
CO6	Communicate geological findings effectively through remote sensing data analysis and interpretation.	Un	Р	Report writing
- Factu	emember (R), Understand (U), App al Knowledge(F) Conceptual Knowledge (M)			

Detailed Syllabus: REMOTE SENSING FOR GEOLOGY

Module	Unit	Content	Hrs	Marks						
	Introdu	ction to Remote Sensing for Geology	10							
I	1	Overview of remote sensing principles and platforms	2							
	2	2	15							
	3	Types of remote sensing sensors	2	15						
	4									
	5	5 Applications of remote sensing in geological studies								
		Image Interpretation and Analysis	15							
	6									
	7	Characteristic features used for visual analysis	2							
Π	8									
11	9	Image processing techniques - enhancement	2	20						
	10	Image processing techniques - classification	2							
	11	Image processing techniques - change detection)	2							
	12	Case studies of geological feature identification and mapping	2							
		Geological Mapping and Resource Exploration	10							
	13	Geological mapping using remote sensing data	2							
	14	Integration of remote sensing with Geographic Information	3							
		Systems (GIS)								
III		• • •		15						
	15	Applications of remote sensing in mineral and hydrocarbon	2							
		exploration	-							
	16	Field validation and ground truthing of remote sensing data	3							
		Advanced Remote Sensing Applications in Geology	13							
	17	Hyperspectral remote sensing for mineral mapping and	2							
	17	lithological discrimination	2							
	18	Radar remote sensing for terrain analysis and geological hazard	3							
	10	assessment	C	• •						
IV	19	Remote sensing of active tectonics	2	20						
	20	Remote Sensing in hydrogeological studies	3							
	21	Remote sensing for	3							
	22	Future trends and emerging technologies in remote sensing for	2							
		geological applications								
		Open Ended Module	12	10						
		Case studies of remote sensing in various geological applications.								
V		This can be carried out and demonstrated using NRSC, Bhuvan								
		and similar datasets and Open source software.								

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)									
	Components of Internal	4 Theory Modules	Open ended Module							
	Evaluation	(20)	(10)							
1	Test paper/ Mid semester Exam	10	5							
2	Seminar/ Viva/ Quiz/ Data	6	3							
	Collection									
3	Assignment/ Report Writing	4	2							

Mapping of COs to Assessment Rubrics:

	Instructor- Created Exams / Quiz	Assignment	End Semester Examinations
CO 1	\checkmark		\checkmark
CO 2	\checkmark		\checkmark
CO 3	\checkmark		\checkmark
CO 4		\checkmark	
CO 5		\checkmark	\checkmark
CO 6		\checkmark	\checkmark

References:

- 1. "Remote Sensing and Image Interpretation" by Thomas Lillesand, Ralph W. Kiefer, and Jonathan Chipman. (Wiley, 2015)
- "Remote Sensing of the Environment: An Earth Resource Perspective" by John R. Jensen.
 (Description 2015)

(Pearson, 2015)

- 3. "Introduction to Remote Sensing" by James B. Campbell (Guilford Press ,2015)
- 4. "Digital Image Processing" by Rafael C. Gonzalez and Richard E. Woods (Pearson, 2017)
- 5. "Remote Sensing for Geologists: A Guide to Image Interpretation" by Gary L. Prost (CRC Press, 2009)
- 6. "Hyperspectral Remote Sensing: Principles and Applications" by Gui-Jun Yang (CRC Press, 2012)

Programme	B. Sc. Geology									
Course Code	GEL8EJ404									
Course Title	OCEANOGRAPHY	OCEANOGRAPHY								
Type of Course	Major - Elective									
Semester	VIII									
Academic	400 - 499									
Level										
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours					
	4	4	-	0	60					
Pre-requisites	NIL									
Course	Oceanography is a course designed to introduce students to the study of									
Summary	the Earth's oceans, c	covering their	r physical, o	chemical, geol	logical, and					
	biological characteris	tics.								

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the fundamental	U	F	Instructor-
	principles of oceanography and its interdisciplinary nature.			created exams / Quiz
CO2	Describe the physical properties of seawater and the processes driving ocean circulation.	An	С	Assignment
CO3	Analyze the geological features and processes shaping the seafloor and continental margins.	An	Р	Assignment
CO4	Explain the chemical composition of seawater and the biogeochemical cycles occurring in the oceans.	С	Р	Problem Solving
CO5	Evaluate the diversity and distribution of marine life and their adaptation to different oceanic environments.	Ap	Р	Test paper
CO6	Apply knowledge of oceanography to interpret environmental issues and their implications for society.	С	Р	Assignment
	emember (R), Understand (U), Apply			
	ctual Knowledge(F) Conceptual Kno	wledge (C) Pro	cedural Knowledg	e (P)
Metac	cognitive Knowledge (M)			

Detailed Syllabus: OCEANOGRAPHY

Module	Unit	Content	Hrs	Marks					
	Intro	duction to Oceanography							
	1								
Ι	2								
	3	10	15						
		10	15						
	4	Ocean basins and their physical characteristics							
	-	5 Oceans and mineral resources							
	6	Oceans and climate							
	Physi	cal Oceanography							
	7	Properties of seawater (temperature, salinity, density)							
II	8	Ocean circulation patterns (wind-driven)		10					
	9	Ocean circulation patterns (thermohaline circulation)	6						
	10 Waves, tides, and currents								
	11								
	12	Coastal processes and landforms (waves, beaches, estuaries)							
	Chen	nical and Geological Oceanography							
	13	Chemical composition of seawater (major ions, nutrients, gases)							
III	14	Biogeochemical cycles (carbon, nitrogen, phosphorus)	16	20					
	15	Marine sediments and sedimentary processes	10						
	16	Plate tectonics and marine geology-continental margins							
	17	Plate tectonics and marine geology - mid-ocean ridges							
	Biolo	gical Oceanography							
	18	Marine ecosystems and biodiversity							
IV	19	Adaptations of marine organisms to different oceanic environments							
	20	16	25						
	21								
	22								
		Open-ended module							
V		Technological advancements in understanding ocean basins could be	12	10					
		discussed. Scientific movies may be shown and discussed.							

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)								
	Components of Internal 4 Theory Modules Open ended Modu							
	Evaluation	(20)	(10)					
1	Test paper/ Mid semester Exam	10	5					
2	Seminar/ Viva/ Quiz/ Data	6	3					
	Collection							
3	Assignment/ Report Writing	4	2					

Mapping of COs to Assessment Rubrics:

	Instructor- Created Exams / Quiz	Assignment	End Semester Examinations
CO 1	\checkmark		\checkmark
CO 2	\checkmark		\checkmark
CO 3	\checkmark		\checkmark
CO 4		\checkmark	
CO 5		\checkmark	\checkmark
CO 6		\checkmark	\checkmark

- 1. "Oceanography: An Invitation to Marine Science" by Tom S. Garrison (Cengage Learning, 2019)
- 2. "Essentials of Oceanography" by Alan P. Trujillo and Harold V. Thurman (Pearson, 2017)
- "Introduction to the World's Oceans" by Keith A. Sverdrup, Craig F. Bohren, and Alan P. Trujillo. (McGraw-Hill Education, 2019)
- 4. "Marine Biology: Function, Biodiversity, Ecology" by Jeffrey S. Levinton (Oxford University Press, 2017)
- 5. "Oceanography and Marine Biology: An Introduction to Marine Science" by David W. Townsend. (Sinauer Associates Inc., 2018)
- 6. "Marine Geology: Exploring the New Frontiers of the Ocean" by Jon Erickson (CreateSpace Independent Publishing Platform, 2017)

Programme	B. Sc. Geology					
Course Code	GEL8EJ405					
Course Title	ANALYTICAL TE	CHNIQUES	IN GEOLO	GY		
Type of Course	Major - Elective					
Semester	VIII					
Academic	400 - 499					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	4	-	0	60	
Pre-requisites	NIL					
Course	This course provid	es a theore	etical found	ation for ur	nderstanding	
Summary	analytical techniques commonly used in geological research and					
	exploration. Students will learn the principles behind various analytical					
	methods, including spectroscopy, microscopy, chromatography, and					
	mass spectrometry.					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Understand the theoretical principles behind analytical techniques commonly used in geology.	U	F	Test Paper			
CO2	Describe the instrumentation and methodologies involved in spectroscopic, microscopic, chromatographic, and mass spectrometric techniques.	An	С	Assignment			
CO3	Apply analytical techniques to identify and quantify geological components, minerals, and elements in geological samples.	An	Р	Assignment			
CO4	Interpret geochemical data obtained from analytical techniques to understand geological processes and environments.	С	Р	Problem Solving			
CO5	Evaluate the strengths and limitations of different analytical techniques for geological applications.	Ар	Р	Test paper			
CO6	Communicate effectively about the theory and application of analytical techniques in geological research.	С	Р	Assignment			
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Module	Unit	Content	Hrs	Marks		
	1	Overview of Analytical Techniques				
Ι	2	Importance of Analytical Techniques in Geology	5	8		
	3 Principles of Analytical Chemistry					
	4	Atomic Absorption Spectroscopy (AAS)				
	5	Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-				
II		OES)	15	18		
	6	X-ray Fluorescence (XRF)				
	7	Fourier Transform Infrared Spectroscopy (FTIR)				
	8	Optical Microscopy				
	9 Scanning Electron Microscopy (SEM)		10	14		
III	III 10 Transmission Electron Microscopy (TEM)					
	11 Atomic Force Microscopy (AFM)					
	12	Gas Chromatography (GC)				
	13	Liquid Chromatography (LC)				
IV	14	High-Performance Liquid Chromatography (HPLC)				
	15	Gas Chromatography-Mass Spectrometry (GC-MS)				
	16	Liquid Chromatography-Mass Spectrometry (LC-MS)				
	17	Inductively Coupled Plasma Mass Spectrometry (ICP-MS)	18	30		
	18	Application of Analytical Techniques in Geology				
	19	Interpretation of Geochemical Data				
	20	Interpretation of published data				
	20 Interpretation of published data 21 Research Applications					
	22	Case Studies				
V		Open Ended Module	12	10		
	Student	s may be given exposure to the facilities by visiting laboratories in the				
	same in	stitution or other HEIs or Laboratories.				

Detailed Syllabus: ANALYTICAL TECHNIQUES IN GEOLOGY

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil

1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)							
	Components of Internal 4 Theory Modules Open ended Modu							
	Evaluation	(20)	(10)					
1	Test paper/ Mid semester Exam	10	5					
2	Seminar/ Viva/ Quiz/ Data	6	3					
	Collection							
3	Assignment/ Report Writing	4	2					

Mapping of COs to Assessment Rubrics:

	Instructor- Created Exams / Quiz	Assignment	End Semester Examinations
CO 1	\checkmark		\checkmark
CO 2	\checkmark		\checkmark
CO 3	\checkmark		\checkmark
CO 4		\checkmark	
CO 5		\checkmark	\checkmark
CO 6		\checkmark	\checkmark

- 1. "Principles and Applications of Geochemistry" by Gunter Faure., (Pearson, 1998)
- "Introduction to Mineralogy and Petrology" by Swapan Kumar Haldar., (Elsevier, 2013)
- 3. "Geochemical Instrumentation and Analysis" by Michael W. A. Dixon and Roy W. Haggerty., (Cambridge University Press, 2014)
- 4. "Modern Analytical Geochemistry: An Introduction to Quantitative Chemical Analysis Techniques for Earth, Environmental and Materials Scientists" edited by Robin Gill (Routledge, 1997)
- 5. "Handbook of Practical X-Ray Fluorescence Analysis" by Burkhard Beckhoff, Birgit Kanngießer, Norbert Langhoff, Reiner Wedell, and Helmut Wolff., (Springer, 2006)
- 6. "Essentials of Igneous and Metamorphic Petrology" by B. Ronald Frost and Carol D. Frost., (Cambridge University Press, 2013)
- 7. "X-Ray Diffraction: A Practical Approach" by C. Suryanarayana and M. Grant Norton (Springer,1998)
- 8. "Principles of Stable Isotope Geochemistry" by Zachary Sharp., (Pearson, 2006)

Programme	B. Sc. Geology						
Course Code	GEL8EJ406						
Course Title	INTRODUCTION	FO SOIL SO	CIENCE				
Type of Course	Major - Elective						
Semester	VIII						
Academic	400 - 499						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	4	-	0	60		
Pre-requisites	NIL						
Course	Introduction to Soil	Science is	designed to	provide stud	ents with a		
Summary	comprehensive une	derstanding	of soil	properties,	formation,		
	classification, and the	eir significan	ce in various	fields.			

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Understand the fundamental concepts and principles of soil science.	U	F	Instructor-created exams / Quiz			
CO2	Describe the physical, chemical, and biological properties of soil.	An	С	Assignment			
CO3	Identify the different components of soil and their roles in soil formation.	An	Р	Assignment			
CO4	Analyze soil profiles and classify soils based on recognized systems.	С	Р	Problem Solving			
CO5	Evaluate the importance of soil in supporting ecosystem services.	Ар	Р	Test paper			
CO6	Apply knowledge of soil science principles to address environmental, and land management challenges.	С	Р	Assignment			
	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						
Inicial							

Module	Unit	Content	Hrs (60)	Marks (70)
Ι		Introduction to Soil Science	8	
	1	Definition and scope of soil science	2	
	2	Historical development of soil science	2	10
	3	Importance of soil in ecosystems and human society	2	-
	4	Soil science research methods and techniques	2	
Π		Soil Formation and Classification	12	-
	5	Factors influencing soil formation (parent material, climate,	2	
		organisms, topography, time)		-
	6	Soil formation processes (weathering, erosion, deposition)	2	10
	7	Soil profile and horizons	2	10
	8	Soil classification systems (e.g., USDA Soil Taxonomy, World	4	
		Reference Base for Soil Resources)		
III		Physical & Chemical Properties of Soil	18	-
	9	Soil texture and particle size distribution	2	-
	10	Soil structure and aggregation	2	-
	11	Soil porosity and permeability	2	20
	12	Soil temperature, color, and density	2	20
	13	Soil composition and mineralogy	3	
	14	Soil pH and acidity/alkalinity	2	
	15	Soil nutrients and nutrient cycling (nitrogen, phosphorus, potassium)	3	
	16	Cation exchange capacity and soil fertility	2	
IV		Biological Properties of Soil	10	
	17	Soil microorganisms (bacteria, fungi, protozoa)	2	
	18	Soil fauna (earthworms, nematodes, arthropods)	2	20
	19	Soil organic matter and decomposition processes	3	
	20	Soil biodiversity and its importance in ecosystem functioning	3	
V		Open Ended Module	12	10
		Soil science and its close relation to geology may be thoroughly discussed.		

Detailed Syllabus: INTRODUCTION TO SOIL SCIENCE

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)						
	Components of Internal	4 Theory Modules	Open ended Module				
	Evaluation	(20)	(10)				
1	Test paper/ Mid semester Exam	10	5				
2	Seminar/ Viva/ Quiz/ Data Collection	6	3				
3	Assignment/ Report Writing	4	2				

Mapping of COs to Assessment Rubrics:

	Instructor-	Assignment	End Semester Examinations
	Created Exams		
	/ Quiz		
CO 1	\checkmark		\checkmark
CO 2	\checkmark		\checkmark
CO 3	\checkmark		\checkmark
CO 4		\checkmark	
CO 5		\checkmark	\checkmark
CO 6		\checkmark	\checkmark

- 1. "Soil Science: An Introduction to the Properties and Management of New Zealand Soils" by Peter J. Almond and Douglas S. Hamilton., (Oxford University Press, 2014)
- 2. "Soil Science Simplified" by Helmut Kohnke and Pan Ming Huang (Waveland Press, 1997)
- 3. "The Nature and Properties of Soils" by Nyle C. Brady and Ray R. Weil (Pearson, 2016)
- 4. "Principles of Soil Chemistry" by Kim H. Tan., (CRC Press, 2011)
- 5. "Soil Science: Step-by-Step Field Analysis" by P.D. Sharma (Daya Publishing House, 2010)
- 6. "Introduction to Environmental Soil Physics" by Daniel Hillel (Academic Press, 2003)

Research Methodology Course in Geology

Programme	B. Sc. Geology						
Course Code	GEL8CJ489	GEL8CJ489					
Course Title	RESEARCH METH	IODOLOGY	Y IN GEOL	OGY			
Type of Course	Major						
Semester	VIII						
Academic	400 - 499						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	4	-	0	60		
Pre-requisites	NIL						
Course	The course introduc	The course introduces the research methodology in Geology to the					
Summary	students who are opting Honours with Research Programme in Geology						
Course Outcomes (CO):							

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Develop clear and concise research questions and hypotheses based on existing literature and geological concepts.	U	F	Exam
CO2	Plan and design geological research projects, including the selection of appropriate methodologies and tools.	Ар	С	Quiz
CO3	Employ various data collection techniques, such as field sampling, laboratory analysis, and remote sensing.	An	Р	Assignment
CO4	Synthesize and integrate data from multiple sources to draw comprehensive geological conclusions.	E	М	Viva
CO5	Conduct thorough literature reviews to support research hypotheses and contextualize findings.	Ар	F	Assignment
CO6	Write clear and well-structured research papers and reports following scientific conventions.	Е	М	Assignment
# - Fa	emember (R), Understand (U), Apply (A actual Knowledge(F) Conceptual Knowl cognitive Knowledge (M)			

Module	Unit	Content	Hrs	Marks			
	Intro	duction to Research Methodology in Geology	12				
	1	Overview of scientific research methods					
	2	Importance of research in geology					
Ι	3 Ethical considerations in geological research						
	4	Identifying research gaps and questions					
	5	Developing testable hypotheses					
	Resea	arch Design and Data Collection Techniques	12				
	6	Types of research designs (experimental, observational, etc.)					
	7	Project planning and management		15			
II	8	Field methods: sampling, mapping, surveying		15			
	9	Laboratory methods: mineral and rock analysis, geochemical methods					
	10	Remote sensing and GIS applications					
	Data	Analysis Methods	12				
	11	Statistical analysis in geology					
	12	Software tools for data analysis (e.g., Excel, R, ArcGIS)		20			
	13	Introduction to computational modeling		20			
III	14	Integrating multiple data sources					
	15	Using geological software for data visualization					
	Critic	cal Evaluation of Literature	12				
	16	Conducting literature reviews					
	17	Assessing the quality and reliability of sources		15			
IV	18	Synthesizing literature to support research		15			
	19	Writing research papers and reports					
		Open – Ended Module	12	10			
\mathbf{V}		Preparing and delivering oral presentations.					
		Designing posters and visual aids					

Detailed Syllabus: RESEARCH METHODOLOGY IN GEOLOGY

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-							
CO 2	2	3	-	-	-	-							
CO 3	-	-	1	-	-	-							
CO 4	-	-	2	3	-	-							
CO 5	-	1	-	-	-	-							
CO 6	-	-	-	3	-	-							

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

External evaluation: 70 marks. Internal Evaluation: 30 marks

INTE	INTERNAL MARK SPLIT-UP (TOTAL 30 MARKS)						
	Components of Internal	4 Theory Modules	Open ended Module				
	Evaluation	(20)	(10)				
1	Test paper/ Mid semester Exam	10	4				
2	Seminar/ Viva/ Quiz	6	4				
3	Assignment	4	2				

Mapping of COs to Assessment Rubrics:

	Assignment	Seminar	End Semester Examinations
CO 1			,
			\checkmark
CO 2	\checkmark		
CO 3	\checkmark		
CO 4		\checkmark	\checkmark
CO 5			
CO 6			\checkmark

- 1. "Research Methods in Geomorphology" by Ronald G. Barry, Taylor & Francis. (1998)
- 2. "Research Methods in Physical Geography" by Basil Gomez and John Paul Jones III Wiley-Blackwell. (2010)
- 3. "Geological Field Techniques" by Angela L. Coe. Wiley-Blackwell. (2010)
- 4. "Data Analysis in the Earth Sciences Using Matlab" by Gerald B. Fogelson Cambridge University Press. (1997)
- 5. "Introduction to Geological Data Analysis" by Andrew Curtis and Roger Wood Cambridge University Press. (2004)
- 6. "Geostatistics Explained: An Introductory Guide for Earth Scientists" by Steve McKillup and Melinda Darby Dyar. Cambridge University Press. (2010)

Format of the Question Paper Type I for Major and Minor Courses

I Semester B.Sc. (CUFYUGP) Degree Examinations October 2024 GEL1CJ101: Introduction to Geology

(Credits: 4)

Maximum Marks: 70

Section A

[Answer All. Each question carries 3 marks] (Ceiling: 24 Marks)

- 1. Explain the significance of plate tectonics in scientific inquiry.
- 2. Describe the primary layers of Earth's internal structure.
- 3. What is the rock cycle and why is it important in geology?
- 4. Define radiometric dating and its role in geochronology.
- 5. What are the main components of Earth's spheres?
- 6. Outline the main steps involved in the scientific method.
- 7. Describe the major types of volcanic landforms.
- 8. Explain the process of mountain building.

Maximum Time: 2hours

- 9. What are seismic waves and how are they used to study earthquakes?
- 10. Discuss the impact of volcanic hazards on human activity.

Section **B**

[Answer All. Each question carries 6 marks] (Ceiling: 36 Marks)

- 11. Discuss the development of geology as a scientific discipline and its historical milestones.
- 12. Explain the formation of Earth's layered structure and its significance.
- 13. Analyze the relationship between plate tectonics and the formation of major geological features.
- 14. Describe the process of absolute (radiometric) dating and its importance in constructing the Geological Time Scale.
- 15. Evaluate the role of Earth's internal structure in understanding seismic activity and earthquake prediction.
- 16. Examine the major geological events that define the different eras, periods, and epochs of Earth's history.
- 17. Discuss the nature of volcanic eruptions and the different types of products they produce.
- 18. Assess the methods used for earthquake prediction, forecast, and mitigation, and their effectiveness.

Section C [Answer any one. Each question carries 10 marks] (1x10=10 Marks)

- 19. Discuss the evolution of Earth from its formation to the present day, highlighting the key processes and events that have shaped its geological history.
- 20. Evaluate the application of various dating methods in geology and their contribution to the construction of the Geological Time Scale, including an overview of major geological eras, periods, and epochs.

Format of the Question Paper Type II for General Foundation Courses

I Semester B.Sc. (CUFYUGP) Degree Examinations October 2024 GEL1FM105: EXPLORING THE MOTHER EARTH (Credits: 3)

Maximum Time: 1.5 hours

Section A

Maximum Marks: 50

[Answer All. Each question carries 2 marks] (Ceiling: 16 Marks)

- 1. Define physical geology and historical geology.
- 2. What are the main layers of Earth's structure?
- 3. Describe the three main types of rocks in the rock cycle.
- 4. Summarize the Nebular Hypothesis for the origin of the Solar System.
- 5. What are Earth's spheres and their significance?
- 6. Explain the principle of stratigraphy in relative dating.
- 7. What is radiometric dating and how does it work?
- 8. Describe the main processes involved in weathering and erosion.
- 9. What are the different types of plate boundaries?
- 10. Outline the key features of divergent plate boundaries.

Section **B**

[Answer All. Each question carries 6 marks] (Ceiling: 24 Marks)

- 11. Discuss the differentiation of Earth's interior and the formation of its core, mantle, and crust.
- 12. Explain the significance of the geological time scale and how it is divided into eons, eras, periods, and epochs.
- 13. Analyze the role of tectonic activity in shaping major landforms such as mountains and valleys.
- 14. Evaluate the evidence supporting the theory of plate tectonics and its historical development.
- 15. Discuss the geological features associated with subduction zones and their impact on Earth's surface.

Section C

[Answer any one. Each question carries 10 marks] (1x10=10 Marks)

- 16. Discuss the early conditions of Earth during the Hadean, Archean, and Proterozoic eons, and how these conditions influenced the differentiation and development of Earth's layers.
- 17. Evaluate the processes and methods used in both relative and absolute dating to construct the geological time scale, and discuss the significance of major geological events and landforms within this framework.